Citation: | LIAO Xi, HE Changwen, WANG Yang, WAN Yangliang, CHEN Qianbin, ZHANG Jie. Characteristic Analysis and Statistical Modeling of Millimeter Wave OAM Channel in Indoor Corridor Environment[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4194-4203. doi: 10.11999/JEIT211145 |
[1] |
AMIN A A and SHIN S Y. Channel capacity analysis of non-orthogonal multiple access with OAM-MIMO system[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1481–1485. doi: 10.1109/LWC.2020.2994355
|
[2] |
ZHANG Yiming and LI Jialin. An orbital angular momentum-based array for in-band full-duplex communications[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 417–421. doi: 10.1109/LAWP.2019.2893035
|
[3] |
WANG Lei, PARK W, YANG Cheng, et al. Wireless communication of radio waves carrying orbital angular momentum (OAM) above an infinite ground plane[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(5): 2257–2264. doi: 10.1109/TEMC.2020.2965656
|
[4] |
CHEN M L N, JIANG Lijun, and SHA W E I. Detection of orbital angular momentum with metasurface at microwave band[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 110–113. doi: 10.1109/LAWP.2017.2777439
|
[5] |
LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Mode hopping for anti-jamming in radio vortex wireless communications[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 7018–7032. doi: 10.1109/TVT.2018.2825539
|
[6] |
CHENG Wenchi, ZHANG Wei, JING Haiyue, et al. Orbital angular momentum for wireless communications[J]. IEEE Wireless Communications, 2019, 26(1): 100–107. doi: 10.1109/MWC.2017.1700370
|
[7] |
XU Jie. Degrees of freedom of OAM-based line-of-sight radio systems[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1996–2008. doi: 10.1109/TAP.2017.2671430
|
[8] |
CHEN Rui, ZHOU Hong, LONG Wenxuan, et al. Spectral and energy efficiency of line-of-sight OAM-MIMO communication systems[J]. China Communications, 2020, 17(9): 119–127. doi: 10.23919/JCC.2020.09.010
|
[9] |
MURATA K, HONMA N, NISHIMORI K, et al. Analog eigenmode transmission for short-range MIMO based on orbital angular momentum[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6687–6702. doi: 10.1109/TAP.2017.2742582
|
[10] |
CAGLIERO A and GAFFOGLIO R. On the spectral efficiency limits of an OAM-based multiplexing scheme[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 900–903. doi: 10.1109/LAWP.2016.2614338
|
[11] |
CUI Jian, WANG Yang, TU Yanli, et al. Propagation analysis of terahertz OAM waves in atmospheric turbulent environment[C]. The 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020: 1–4.
|
[12] |
ZHENG Shilie, DONG Ruofan, ZHANG Zhuofan, et al. Non-line-of-sight channel performance of plane spiral orbital angular momentum MIMO systems[J]. IEEE Access, 2017, 5: 25377–25384. doi: 10.1109/ACCESS.2017.2766078
|
[13] |
ZHU Qibiao and JIANG Tao. Vortex channel modelling for the radio vortex system[J]. China Communications, 2018, 15(4): 121–129. doi: 10.1109/CC.2018.8357690
|
[14] |
朱启标. 电磁涡旋通信信道建模及容量研究[D]. [博士论文], 华中科技大学, 2019.
ZHU Qibiao. Study on channel modeling and channel capacity of radio vortex communications[D]. [Ph. D. dissertation], Huazhong University of Science and Technology, 2019.
|
[15] |
ZHANG Zhuofan, ZHENG Shilie, CHEN Yiling, et al. The capacity gain of orbital angular momentum based multiple-input-multiple-output system[J]. Scientific Reports, 2016, 6: 25418. doi: 10.1038/srep25418
|
[16] |
YAN Yan, LI Long, XIE Guodong, et al. Multipath effects in millimetre-wave wireless communication using orbital angular momentum multiplexing[J]. Scientific Reports, 2016, 6: 33482. doi: 10.1038/srep33482
|
[17] |
JIE Wenjun, WANG Yang, HU Tao, et al. Two-ray multipath propagation of MIMO-based OAM radio communications[C]. 2019 International Symposium on Antennas and Propagation (ISAP), Xi'an, China, 2020: 1–3.
|
[18] |
JIE Wenjun, WANG Yang, HU Tao, et al. Propagation model for UCA-based OAM communications in six-ray canyon channels[C]. The 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020: 1–4.
|
[19] |
LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Joint OAM multiplexing and OFDM in sparse multipath environments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3864–3878. doi: 10.1109/TVT.2020.2966787
|
[20] |
YU Kai and OTTERSTEN B. Models for MIMO propagation channels: A review[J]. Wireless Communications and Mobile Computing, 2002, 2(7): 653–666. doi: 10.1002/wcm.78
|
[21] |
YAO Yu, LIANG Xianling, ZHU Maohua, et al. Analysis and experiments on reflection and refraction of orbital angular momentum waves[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2085–2094. doi: 10.1109/TAP.2019.2896760
|
[22] |
GONG Yinghui, WANG R, DENG Yunkai, et al. Generation and transmission of OAM-carrying vortex beams using circular antenna Array[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 2940–2949. doi: 10.1109/TAP.2017.2695526
|
[23] |
THIDÉ B and TAMBURINI F. The physics of angular momentum radio[C]. The 1st URSI Atlantic Radio Science Conference, Gran Canaria, Spain, 2015.
|
[24] |
TIAN Haikuo, LIAO Xi, WANG Yang, et al. Effect level based parameterization method for diffuse scattering models at millimeter-wave frequencies[J]. IEEE Access, 2019, 7: 93286–93293. doi: 10.1109/ACCESS.2019.2927612
|