Citation: | LI Yangping, HUANG Ling, WANG Ke, ZHAO Haifeng. A Geometric Reconstrction Method for Predicting Shape of Irregular Rocks under Moon’s Subsurface Using Lunar Penetrating Radar Based on a Deep Learning Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1222-1230. doi: 10.11999/JEIT211142 |
[1] |
YANG Wei and LIN Yangting. New lunar samples returned by Chang’E-5: Opportunities for new discoveries and international collaboration[J]. The Innovation, 2021, 2(1): 100070. doi: 10.1016/j.xinn.2020.100070
|
[2] |
ZHANG Jinhai, ZHOU Bin, LIN Yangting, et al. Lunar regolith and substructure at Chang’E-4 landing site in South Pole–Aitken basin[J]. Nature Astronomy, 2021, 5(1): 25–30. doi: 10.1038/s41550-020-1197-x
|
[3] |
ZHANG Jinhai, YANG Wei, HU Sen, et al. Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(17): 5342–5347. doi: 10.1073/pnas.1503082112
|
[4] |
ZHANG Ling, ZENG Zhaofa, LI Jing, et al. A story of regolith told by lunar penetrating radar[J]. Icarus, 2019, 321: 148–160. doi: 10.1016/j.icarus.2018.11.006
|
[5] |
TRAVASSOS X L, AVILA S L, and IDA N. Artificial neural networks and machine learning techniques applied to ground penetrating radar: A review[J]. Applied Computing and Informatics, 2020, 17(2): 296–308. doi: 10.1016/j.aci.2018.10.001
|
[6] |
侯斐斐, 施荣华, 雷文太, 等. 面向探地雷达B-scan图像的目标检测算法综述[J]. 电子与信息学报, 2020, 42(1): 191–200. doi: 10.11999/JEIT190680
HOU Feifei, SHI Ronghua, LEI Wentai, et al. A review of target detection algorithm for GPR B-scan processing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 191–200. doi: 10.11999/JEIT190680
|
[7] |
王建, 袁宵, 李禹, 等. 利用互相关和Hough变换快速检测探地雷达目标[J]. 电子与信息学报, 2013, 35(5): 1156–1162. doi: 10.3724/SP.J.1146.2012.01134
WANG Jian, YUAN Xiao, LI Yu, et al. Fast detection of ground penetrating radar objects based on cross correlation and Hough transform[J]. Journal of Electronics &Information Technology, 2013, 35(5): 1156–1162. doi: 10.3724/SP.J.1146.2012.01134
|
[8] |
GAO Jie, YUAN Dongdong, TONG Zheng, et al. Autonomous pavement distress detection using ground penetrating radar and region-based deep learning[J]. Measurement, 2020, 164: 108077. doi: 10.1016/j.measurement.2020.108077
|
[9] |
LI Shuwei, GU Xingyu, XU Xiangrong, et al. Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm[J]. Construction and Building Materials, 2021, 273: 121949. doi: 10.1016/j.conbuildmat.2020.121949
|
[10] |
KHUDOYAROV S, KIM N, and LEE J J. Three-dimensional convolutional neural network–based underground object classification using three-dimensional ground penetrating radar data[J]. Structural Health Monitoring, 2020, 19(6): 1884–1893. doi: 10.1177/1475921720902700
|
[11] |
LIU T, KLOTZSCHE A, PONDKULE M, et al. Estimation of subsurface cylindrical object properties from GPR full-waveform inversion[C]. The 2017 9th International Workshop on Advanced Ground Penetrating Radar, Edinburgh, UK, 2017: 1–4.
|
[12] |
GIANNAKIS I, GIANNOPOULOS A, and WARREN C. A machine learning scheme for estimating the diameter of reinforcing bars using ground penetrating radar[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(3): 461–465. doi: 10.1109/LGRS.2020.2977505
|
[13] |
CARLSON I C and WALTON W J A. Apollo-14 rock samples[R]. JSC 14240, 1978.
|
[14] |
GIANNOPOULOS A. Modelling ground penetrating radar by GprMax[J]. Construction and Building Materials, 2005, 19(10): 755–762. doi: 10.1016/j.conbuildmat.2005.06.007
|
[15] |
DENG Caixia, WANG Guibin, and YANG Xinrui. Image edge detection algorithm based on improved canny operator[C]. 2013 International Conference on Wavelet Analysis and Pattern Recognition, Tianjin, China, 2013: 168–172.
|
[16] |
GOLD T, BILSON E, and BARON R L. Electrical properties of Apollo 17 rock and soil samples and a summary of the electrical properties of lunar material at 450 MHz frequency[C]. The 7th Lunar Science Conference, New York, USA, 1976: 2593–2603.
|
[17] |
WOLD S, ESBENSEN K, and GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/3): 37–52. doi: 10.1016/0169-7439(87)80084-9
|
[18] |
PENNINGTON J, SCHOENHOLZ S S, and GANGULI S. Resurrecting the sigmoid in deep learning through dynamical isometry: Theory and practice[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 4788–4798.
|
[19] |
HINTON G, SRIVASTAVA N, and SWERSKY K. Neural networks for machine learning lecture 6a overview of mini-batch gradient descent[J]. Cited on, 2012, 14(8): 2.
|
[20] |
FIELD A. Logistic Regression[M]. FIELD A. Discovering Statistics Using SPSS. London: SAGE Publications Ltd, 2009: 264–315.
|