Huang Dexing. A DESIGN OF DOUBLE INJECTION TYPE MAGNETO-DIODE[J]. Journal of Electronics & Information Technology, 1986, 8(2): 104-109.
Citation:
CHENG Qingfeng, MA Yuqian. Cryptoanalysis on the Forward Security of Two Authenticated Key Protocols[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4294-4303. doi: 10.11999/JEIT211137
Huang Dexing. A DESIGN OF DOUBLE INJECTION TYPE MAGNETO-DIODE[J]. Journal of Electronics & Information Technology, 1986, 8(2): 104-109.
Citation:
CHENG Qingfeng, MA Yuqian. Cryptoanalysis on the Forward Security of Two Authenticated Key Protocols[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4294-4303. doi: 10.11999/JEIT211137
At present, network security and privacy have attracted extensive attention. Forward security is a security attribute of Authenticated Key Agreement protocol (AKA) proposed by Günther in 1989. Since then, this property has become one of the hot topics. This paper analyzes the security properties of two AKA protocols, MZK20 and VSR20. First, based on heuristic analysis and BAN logic, MZK20 protocol is proved that it does not satisfy weak forward security. Second, using heuristic analysis and Scyther, it is proved that VSR20 protocol does not fulfill forward security. Finally, the enhanced VSR20 protocol is designed and proved more secure than VSR20. The security of the modified VSR20 is verified both by the use of security reduction under eCK model and Scyther.
定义1 椭圆曲线上的离散对数问题(Discrete Logarithm Problem over Elliptic Curve, ECDLP)。设E是定义在有限域Zq上的椭圆曲线,P,Q是E上的任意两点,则求解满足等式kP=Q成立的唯一整数k是困难的。
定义2 椭圆曲线上的计算性Diffie-Hellman问题(Computational Diffie-Hellman Problem over Elliptic Curve, ECCDH)。设E是定义在有限域Zq上的椭圆曲线,G是与E对应的有限循环群,给定P,aP,bP∈G,则求解abP∈G是困难的。
GÜNTHER C G. An identity-based key-exchange protocol[C]. Workshop on the Theory and Application of of Cryptographic Techniques, Houthalen, Belgium, 1989: 29–37.
[2]
MATSUMOTO T, TAKASHIMA Y, and IMAI H. On seeking smart public-key-distribution systems[J]. Transactions of the Institute of Electronics and Communication Engineers of Japan Section E, 1986, 69(2): 99–106.
[3]
JEONG I R, KATZ J, and LEE D H. One-round protocols for two-party authenticated key exchange[C]. The 2nd International Conference on Applied Cryptography and Network Security, Yellow Mountain, China, 2004: 220–232.
[4]
KRAWCZYK H. HMQV: A high-performance secure Diffie-Hellman protocol[C]. The 25th Annual International Cryptology Conference, Santa Barbara, USA, 2005: 546–566.
[5]
BOYD C and NIETO J G. On forward secrecy in one-round key exchange[C]. The 13th IMA International Conference on Cryptography and Coding, Oxford, UK, 2011: 451–468.
CAO Chenlei, LIU Mingqi, ZHANG Ru, et al. Provably secure authenticated key agreement protocol based on hierarchical identity[J]. Journal of Electronics &Information Technology, 2014, 36(12): 2848–2854. doi: 10.3724/SP.J.1146.2014.00684
YANG Xiaopeng, MA Wenping, and ZHANG Chengli. New authenticated key exchange scheme based on ring learning with errors problem[J]. Journal of Electronics &Information Technology, 2015, 37(8): 1984–1988. doi: 10.11999/JEIT141506
XIONG Jing and WANG Jianming. Based on HASH function of RFID security authentication protocol and analysis[J]. China Measurement &Test, 2017, 43(3): 87–90,96. doi: 10.11857/j.issn.1674-5124.2017.03.018
[9]
LI Xiong, PENG Jieyao, OBAIDAT M S, et al. A secure three-factor user authentication protocol with forward secrecy for wireless medical sensor network systems[J]. IEEE Systems Journal, 2021, 14(1): 39–50. doi: 10.1109/JSYST.2019.2899580
[10]
SALEEM M A, SHAMSHAD S, AHMED S, et al. Security analysis on “A secure three-factor user authentication protocol with forward secrecy for wireless medical sensor network systems”[J]. IEEE Systems Journal, 2021, 15(4): 5557–5559. doi: 10.1109/JSYST.2021.3073537
[11]
YANG Zheng, HE Jun, TIAN Yangguang, et al. Faster authenticated key agreement with perfect forward secrecy for industrial internet-of-things[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6584–6596. doi: 10.1109/TII.2019.2963328
[12]
CHANG C C and LE H D. A provably secure, efficient, and flexible authentication scheme for ad hoc wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(1): 357–366. doi: 10.1109/TWC.2015.2473165
[13]
GOPE P and HWANG T. A realistic lightweight anonymous authentication protocol for securing real-time application data access in wireless sensor networks[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7124–7132. doi: 10.1109/TIE.2016.2585081
WANG Chenyu, WANG Ding, WANG Feifei, et al. Multi-factor user authentication scheme for multi-gateway wireless sensor networks[J]. Chinese Journal of Computers, 2020, 43(4): 683–700. doi: 10.11897/SP.J.1016.2020.00683
[15]
QIU Shuming, WANG Ding, XU Guoai, et al. Practical and provably secure three-factor authentication protocol based on extended chaotic-maps for mobile lightweight devices[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(2): 1338–1351. doi: 10.1109/TDSC.2020.3022797
[16]
SHAMSHAD S, SALEEM M A, OBAIDAT M S, et al. On the security of a lightweight privacy-preserving authentication protocol for VANETs[C]. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 2021: 1766–1770.
[17]
RESCORLA E.Internet Engineering Task Force. RFC 8446-The Transport Layer Security (TLS) protocol version 1.3[S]. 2018.
[18]
BOYD C and GELLERT K. A modern view on forward security[J]. The Computer Journal, 2021, 64(4): 639–652. doi: 10.1093/comjnl/bxaa104
[19]
LAMACCHIA B, LAUTER K, and MITYAGIN A. Stronger security of authenticated key exchange[C]. The 1st International Conference on Provable Security, Wollongong, Australia, 2007: 1–16.
[20]
CANETTI R and KRAWCZYK H. Analysis of key-exchange protocols and their use for building secure channels[C]. International Conference on the Theory and Applications of Cryptographic Techniques, Innsbruck, Austria, 2001: 453–474.
[21]
MOHAMED M I, WANG Xiaofen, and ZHANG Xiaosong. Adaptively-secure authenticated key exchange protocol in standard model[J]. International Journal of Network Security, 2018, 20(2): 345–358. doi: 10.6633/IJNS.201803.20(2).16
[22]
BURROWS M, ABADI M, and NEEDHAM R M. A logic of authentication[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1989, 426(1871): 233–271. doi: 10.1098/rspa.1989.0125
[23]
CREMERS C J F. The scyther tool: Verification, falsification, and analysis of security protocols[C]. International Conference on Computer Aided Verification, Princeton, USA, 2008: 414–418.
[24]
AKRAM M A, GHAFFAR Z, MAHMOOD K, et al. An anonymous authenticated key-agreement scheme for multi-server infrastructure[J]. Human-centric Computing and Information Sciences, 2020, 10(1): 22. doi: 10.1186/s13673-020-00227-9
[25]
SURESHKUMAR V, ANANDHI S, AMIN R, et al. Design of robust mutual authentication and key establishment security protocol for cloud-enabled smart grid communication[J]. IEEE Systems Journal, 2021, 15(3): 3565–3572. doi: 10.1109/JSYST.2020.3039402