Citation: | SUN Bangyong, ZHAO Xingyun, WU Siyuan, YU Tao. Low-light Image Enhancement Method Based on Shifted Window Multi-head Self-attention U-shaped Network[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3399-3408. doi: 10.11999/JEIT211131 |
[1] |
KIM W, JEONG J, and YOU J. Contrast enhancement using histogram equalization based on logarithmic mapping[J]. Optical Engineering, 2012, 51(6): 067002. doi: 10.1117/1.OE.51.6.067002
|
[2] |
CELIK T. Spatial entropy-based global and local image contrast enhancement[J]. IEEE Transactions on Image Processing, 2014, 23(12): 5298–5308. doi: 10.1109/TIP.2014.2364537
|
[3] |
JOBSON D J, RAHMAN Z, and WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451–462. doi: 10.1109/83.557356
|
[4] |
JOBSON D J, RAHMAN Z, and WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965–976. doi: 10.1109/83.597272
|
[5] |
WANG Shuhang, ZHENG Jin, HU Haimiao, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538–3548. doi: 10.1109/TIP.2013.2261309
|
[6] |
LI Mading, LIU Jiaying, YANG Wenhan, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828–2841. doi: 10.1109/TIP.2018.2810539
|
[7] |
LORE K G, AKINTAYO A, and SARKAR S. LLNet: A deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650–662. doi: 10.1016/j.patcog.2016.06.008
|
[8] |
WEI Chen, WANG Wenjing, YANG Wenhan, et al. Deep retinex decomposition for low-light enhancement[C]. 2018 British Machine Vision Conference, Newcastle, UK, 2018: 1–12.
|
[9] |
ZHANG Yonghua, ZHANG Jiawan, and GUO Xiaojie. Kindling the darkness: A practical low-light image enhancer[C]. The 27th ACM International Conference on Multimedia, Nice, France, 2019: 1632–1640.
|
[10] |
CHEN Chen, CHEN Qifeng, XU Jia, et al. Learning to see in the dark[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3291–3300.
|
[11] |
WANG Ruixing, ZHANG Qing, FU C, et al. Underexposed photo enhancement using deep illumination estimation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6842–6850.
|
[12] |
JIANG Yifan, GONG Xinyu, LIU Ding, et al. EnlightenGAN: Deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340–2349. doi: 10.1109/TIP.2021.3051462
|
[13] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 2015: 234–241.
|
[14] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
|
[15] |
LAI Weisheng, HUANG Jiabin, AHUJA N, et al. Fast and accurate image super-resolution with deep laplacian pyramid networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2599–2613. doi: 10.1109/TPAMI.2018.2865304
|
[16] |
WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
|
[17] |
JOHNSON J, ALAHI A, and LI F F. Perceptual losses for real-time style transfer and super-resolution[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 694–711.
|
[18] |
LUO M R, CUI G, and RIGG B. The development of the CIE 2000 colour-difference formula: CIEDE2000[J]. Color Research and Application, 2001, 26(5): 340–350. doi: 10.1002/col.1049
|
[19] |
ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 586–595.
|
[20] |
LV Feifan, LU Feng, WU Jianhua, et al. MBLLEN: Low-light image/video enhancement using CNNs[C]. 2018 British Machine Vision Conference, Newcastle, UK, 2018: 1–13.
|
[21] |
WANG Wenjing, WEI Chen, YANG Wenhan, et al. GLADNet: Low-light enhancement network with global awareness[C]. The 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi'an, China, 2018: 751–755.
|
[22] |
ZHANG Yu, DI Xiaoguang, ZHANG Bin, et al. Self-supervised image enhancement network: Training with low light images only[EB/OL]. https://arxiv.org/pdf/2002.11300.pdf, 2020.
|
[23] |
GUO Chunle, LI Chongyi, GUO Jichang, et al. Zero-reference deep curve estimation for low-light image enhancement[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1777–1786.
|