Advanced Search
Volume 44 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
WANG Pingbo, LIU Yang. Underwater Target Tracking Algorithm Based on Improved Adaptive IMM-UKF[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1999-2005. doi: 10.11999/JEIT211128
Citation: WANG Pingbo, LIU Yang. Underwater Target Tracking Algorithm Based on Improved Adaptive IMM-UKF[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1999-2005. doi: 10.11999/JEIT211128

Underwater Target Tracking Algorithm Based on Improved Adaptive IMM-UKF

doi: 10.11999/JEIT211128
  • Received Date: 2021-10-14
  • Accepted Date: 2022-04-30
  • Rev Recd Date: 2022-04-17
  • Available Online: 2022-05-06
  • Publish Date: 2022-06-21
  • To solve the lack of model switching and tracking accuracy of the existing Adaptive Interacting Multiple Model (AIMM) in the underwater target tracking, combined with the Unscented Kalman Filter, an improved AIMM-UKF algorithm is proposed. On the basis of adaptively modifying the Markov probability transition matrix, this algorithm uses the decision window to modify it twice to increase the probability of the matching model observably and reduce the effects of the mismatch model. Simulation results show that compared with the original adaptive algorithm, the improved algorithm can make fuller use of posterior information, has a better model switching speed, and improves tracking accuracy by about 24%.
  • loading
  • [1]
    MAZOR E, AVERBUCH A, BAR-SHALOM Y, et al. Interacting multiple model methods in target tracking: A survey[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 103–123. doi: 10.1109/7.640267
    [2]
    KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35–45. doi: 10.1115/1.3662552
    [3]
    许红, 谢文冲, 袁华东, 等. 基于自适应的增广状态-交互式多模型的机动目标跟踪算法[J]. 电子与信息学报, 2020, 42(11): 2749–2755. doi: 10.11999/JEIT190516

    XU Hong, XIE Wenchong, YUAN Huadong, et al. Maneuvering target tracking algorithm based on the adaptive augmented state interracting multiple model[J]. Journal of Electronics &Information Technology, 2020, 42(11): 2749–2755. doi: 10.11999/JEIT190516
    [4]
    DAUM F. Nonlinear filters: Beyond the Kalman filter[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57–69. doi: 10.1109/MAES.2005.1499276
    [5]
    SONG T and SPEYER J. A stochastic analysis of a modified gain extended Kalman filter with applications to estimation with bearings only measurements[J]. IEEE Transactions on Automatic Control, 1985, 30(10): 940–949. doi: 10.1109/TAC.1985.1103821
    [6]
    TIAN Mengchu, BO Yuming, CHEN Zhimin, et al. Multi-target tracking method based on improved firefly algorithm optimized particle filter[J]. Neurocomputing, 2019, 359: 438–448. doi: 10.1016/j.neucom.2019.06.003
    [7]
    马艳, 刘小东. 状态自适应无迹卡尔曼滤波算法及其在水下机动目标跟踪中的应用[J]. 兵工学报, 2019, 40(2): 361–368. doi: 10.3969/j.issn.1000-1093.2019.02.016

    MA Yan and LIU Xiaodong. State adaptive unscented Kaiman filter algorithm and its application in tracking of underwater maneuvering target[J]. Acta Armamentarii, 2019, 40(2): 361–368. doi: 10.3969/j.issn.1000-1093.2019.02.016
    [8]
    许登荣, 程水英, 包守亮. 自适应转移概率交互式多模型跟踪算法[J]. 电子学报, 2017, 45(9): 2113–2120. doi: 10.3969/j.issn.0372-2112.2017.09.009

    XU Dengrong, CHENG Shuiying, and BAO Shouliang. Interacting multiple model algorithm based on adaptive transition probability[J]. Acta Electronica Sinica, 2017, 45(9): 2113–2120. doi: 10.3969/j.issn.0372-2112.2017.09.009
    [9]
    周昆正. 基于IMM-RDCKF的机动目标跟踪算法[J]. 雷达科学与技术, 2018, 16(6): 656–660,666. doi: 10.3969/j.issn.1672-2337.2018.06.013

    ZHOU Kunzheng. Maneuvering target tracking algorithm based on IMM-RDCKF[J]. Radar Science and Technology, 2018, 16(6): 656–660,666. doi: 10.3969/j.issn.1672-2337.2018.06.013
    [10]
    周非, 罗晓勇, 刘云萍. 基于概率模型的实时修正IMM目标跟踪算法[J]. 计算机工程与应用, 2020, 56(21): 85–92. doi: 10.3778/j.issn.1002-8331.1909-0012

    ZHOU Fei, LUO Xiaoyong, and LIU Yunping. Real-time correction of IMM target tracking algorithm based on probability model[J]. Computer Engineering and Applications, 2020, 56(21): 85–92. doi: 10.3778/j.issn.1002-8331.1909-0012
    [11]
    戴定成, 姚敏立, 蔡宗平, 等. 改进的马尔可夫参数自适应IMM算法[J]. 电子学报, 2017, 45(5): 1198–1205. doi: 10.3969/j.issn.0372-2112.2017.05.024

    DAI Dingcheng, YAO Minli, CAI Zongping, et al. Improved adaptive Markov IMM algorithm[J]. Acta Electronica Sinica, 2017, 45(5): 1198–1205. doi: 10.3969/j.issn.0372-2112.2017.05.024
    [12]
    叶瑾, 许枫, 杨娟, 等. 一种改进的时变转移概率AIMM跟踪算法[J]. 应用声学, 2020, 39(2): 246–252. doi: 10.11684/j.issn.1000-310X.2020.02.011

    YE Jin, XU Feng, YANG Juan, et al. An improved AIMM tracking algorithm based on adaptivetransition probability[J]. Journal of Applied Acoustics, 2020, 39(2): 246–252. doi: 10.11684/j.issn.1000-310X.2020.02.011
    [13]
    罗笑冰, 王宏强, 黎湘. 模型转移概率自适应的交互式多模型跟踪算法[J]. 电子与信息学报, 2005, 27(10): 1539–1541.

    LUO Xiaobing, WANG Hongqiang, and LI Xiang. Interacting multiple model algorithm with adaptive Markov transition probabilities[J]. Journal of Electronics &Information Technology, 2005, 27(10): 1539–1541.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (914) PDF downloads(141) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return