Citation: | WANG Pingbo, LIU Yang. Underwater Target Tracking Algorithm Based on Improved Adaptive IMM-UKF[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1999-2005. doi: 10.11999/JEIT211128 |
[1] |
MAZOR E, AVERBUCH A, BAR-SHALOM Y, et al. Interacting multiple model methods in target tracking: A survey[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 103–123. doi: 10.1109/7.640267
|
[2] |
KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35–45. doi: 10.1115/1.3662552
|
[3] |
许红, 谢文冲, 袁华东, 等. 基于自适应的增广状态-交互式多模型的机动目标跟踪算法[J]. 电子与信息学报, 2020, 42(11): 2749–2755. doi: 10.11999/JEIT190516
XU Hong, XIE Wenchong, YUAN Huadong, et al. Maneuvering target tracking algorithm based on the adaptive augmented state interracting multiple model[J]. Journal of Electronics &Information Technology, 2020, 42(11): 2749–2755. doi: 10.11999/JEIT190516
|
[4] |
DAUM F. Nonlinear filters: Beyond the Kalman filter[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57–69. doi: 10.1109/MAES.2005.1499276
|
[5] |
SONG T and SPEYER J. A stochastic analysis of a modified gain extended Kalman filter with applications to estimation with bearings only measurements[J]. IEEE Transactions on Automatic Control, 1985, 30(10): 940–949. doi: 10.1109/TAC.1985.1103821
|
[6] |
TIAN Mengchu, BO Yuming, CHEN Zhimin, et al. Multi-target tracking method based on improved firefly algorithm optimized particle filter[J]. Neurocomputing, 2019, 359: 438–448. doi: 10.1016/j.neucom.2019.06.003
|
[7] |
马艳, 刘小东. 状态自适应无迹卡尔曼滤波算法及其在水下机动目标跟踪中的应用[J]. 兵工学报, 2019, 40(2): 361–368. doi: 10.3969/j.issn.1000-1093.2019.02.016
MA Yan and LIU Xiaodong. State adaptive unscented Kaiman filter algorithm and its application in tracking of underwater maneuvering target[J]. Acta Armamentarii, 2019, 40(2): 361–368. doi: 10.3969/j.issn.1000-1093.2019.02.016
|
[8] |
许登荣, 程水英, 包守亮. 自适应转移概率交互式多模型跟踪算法[J]. 电子学报, 2017, 45(9): 2113–2120. doi: 10.3969/j.issn.0372-2112.2017.09.009
XU Dengrong, CHENG Shuiying, and BAO Shouliang. Interacting multiple model algorithm based on adaptive transition probability[J]. Acta Electronica Sinica, 2017, 45(9): 2113–2120. doi: 10.3969/j.issn.0372-2112.2017.09.009
|
[9] |
周昆正. 基于IMM-RDCKF的机动目标跟踪算法[J]. 雷达科学与技术, 2018, 16(6): 656–660,666. doi: 10.3969/j.issn.1672-2337.2018.06.013
ZHOU Kunzheng. Maneuvering target tracking algorithm based on IMM-RDCKF[J]. Radar Science and Technology, 2018, 16(6): 656–660,666. doi: 10.3969/j.issn.1672-2337.2018.06.013
|
[10] |
周非, 罗晓勇, 刘云萍. 基于概率模型的实时修正IMM目标跟踪算法[J]. 计算机工程与应用, 2020, 56(21): 85–92. doi: 10.3778/j.issn.1002-8331.1909-0012
ZHOU Fei, LUO Xiaoyong, and LIU Yunping. Real-time correction of IMM target tracking algorithm based on probability model[J]. Computer Engineering and Applications, 2020, 56(21): 85–92. doi: 10.3778/j.issn.1002-8331.1909-0012
|
[11] |
戴定成, 姚敏立, 蔡宗平, 等. 改进的马尔可夫参数自适应IMM算法[J]. 电子学报, 2017, 45(5): 1198–1205. doi: 10.3969/j.issn.0372-2112.2017.05.024
DAI Dingcheng, YAO Minli, CAI Zongping, et al. Improved adaptive Markov IMM algorithm[J]. Acta Electronica Sinica, 2017, 45(5): 1198–1205. doi: 10.3969/j.issn.0372-2112.2017.05.024
|
[12] |
叶瑾, 许枫, 杨娟, 等. 一种改进的时变转移概率AIMM跟踪算法[J]. 应用声学, 2020, 39(2): 246–252. doi: 10.11684/j.issn.1000-310X.2020.02.011
YE Jin, XU Feng, YANG Juan, et al. An improved AIMM tracking algorithm based on adaptivetransition probability[J]. Journal of Applied Acoustics, 2020, 39(2): 246–252. doi: 10.11684/j.issn.1000-310X.2020.02.011
|
[13] |
罗笑冰, 王宏强, 黎湘. 模型转移概率自适应的交互式多模型跟踪算法[J]. 电子与信息学报, 2005, 27(10): 1539–1541.
LUO Xiaobing, WANG Hongqiang, and LI Xiang. Interacting multiple model algorithm with adaptive Markov transition probabilities[J]. Journal of Electronics &Information Technology, 2005, 27(10): 1539–1541.
|