Advanced Search
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LÜ Yan, CAO Fei, YANG Jian, FENG Xiaowei. Robust Beamforming Algorithm Based on Double-layer Estimation of Steering Vector and Covariance Matrix Reconstruction[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4159-4167. doi: 10.11999/JEIT211120
Citation: LÜ Yan, CAO Fei, YANG Jian, FENG Xiaowei. Robust Beamforming Algorithm Based on Double-layer Estimation of Steering Vector and Covariance Matrix Reconstruction[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4159-4167. doi: 10.11999/JEIT211120

Robust Beamforming Algorithm Based on Double-layer Estimation of Steering Vector and Covariance Matrix Reconstruction

doi: 10.11999/JEIT211120
Funds:  The National Natural Science Foundation of China (62071481), The National Science Foundation for Young Scientists of China (61903375, 61501471)
  • Received Date: 2021-10-13
  • Accepted Date: 2021-12-27
  • Rev Recd Date: 2021-12-18
  • Available Online: 2022-01-13
  • Publish Date: 2022-12-16
  • Considering the problem of the low resolution of the Capon Power Spectrum (CPS) in the reconstruction of Interference plus Noise Covariance Matrix (INCM), two Robust Adaptive Beamforming (RAB) algorithms are proposed. The proposed algorithm first searches the peaks of CPS to determine the integration intervals and then eigen-decomposes the covariance matrixes obtained from the integration of each interval. The number of incident sources in the interval is determined by reasonably setting the decision threshold, and the eigenvectors corresponding to the larger eigenvalues are used as the preliminary estimation of the Steering Vectors (SV). Then, by maximizing the estimated power, the gap between the nominal SV and the real SV is searched in the orthogonal space of the nominal SV. The first proposed algorithm uses the eigenvector corresponding to the minimum eigenvalue to add the orthogonal proportional gradient to the initial estimated SV to obtain the double-layer estimated SV. The second proposed algorithm obtains the modified SV by solving a Quadratic Programming (QP) problem. Finally, the optimal weight vector of the array is obtained by reconstructing the INCM. Simulation results demonstrate that the proposed algorithm solves effectively the problem of the low resolution of the CPS estimation and is superior to other algorithms.
  • loading
  • [1]
    BISWAS R N, MITRA S K, and NASKAR M K. Wireless node localization under hostile radio environment using smart antenna[J]. Wireless Personal Communications, 2021, 116(3): 1815–1836. doi: 10.1007/s11277-020-07763-8
    [2]
    JAYAKRISHNAN V M and VIJAYAN D M. Performance analysis of smart antenna for marine communication[C]. The 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore, India, 2020: 88–91.
    [3]
    GROSS F. Smart Antennas with MATLAB[M]. 2nd ed. New York: McGraw-Hill Education, 2015: 148–149.
    [4]
    KUHN E V, PITZ C A, MATSUO M V, et al. A kronecker product CLMS algorithm for adaptive beamforming[J]. Digital Signal Processing, 2021, 111: 102968. doi: 10.1016/j.dsp.2021.102968
    [5]
    杨志伟, 张攀, 陈颖, 等. 导向矢量和协方差矩阵联合迭代估计的稳健波束形成算法[J]. 电子与信息学报, 2018, 40(12): 2874–2880. doi: 10.11999/JEIT180225

    YANG Zhiwei, ZHANG Pan, CHEN Ying, et al. Steering vector and covariance matrix joint iterative estimations for robust beamforming[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2874–2880. doi: 10.11999/JEIT180225
    [6]
    BYRNE D and CRADDOCK I J. Time-domain wideband adaptive beamforming for radar breast imaging[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1725–1735. doi: 10.1109/TAP.2015.2398125
    [7]
    FUKUE T, FUJITA A, and HAMADA N. Estimation of target position by the combination of MUSIC and adaptive beamforming in stepped-FM array radar[J]. IEICE Transactions on Information and Systems, 2015, E88-D(7): 1453–1456. doi: 10.1093/ietisy/e88-d.7.1453
    [8]
    唐敏, 齐栋, 刘成城, 等. 基于多级阻塞的稳健相干自适应波束形成[J]. 电子与信息学报, 2019, 41(7): 1705–1711. doi: 10.11999/JEIT180332

    TANG Min, QI Dong, LIU Chengcheng, et al. New adaptive beamformer for coherent interference based on multistage blocking[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1705–1711. doi: 10.11999/JEIT180332
    [9]
    CHEN Pei, ZHAO Yongjun, and LIU Chengcheng. Robust adaptive beamforming using a low-complexity steering vector estimation and covariance matrix reconstruction algorithm[J]. International Journal of Antennas and Propagation, 2016, 2016: 2438183. doi: 10.1155/2016/2438183
    [10]
    ZHANG Ming, ZHANG Anxue, and YANG Qingqing. Robust adaptive beamforming based on conjugate gradient algorithms[J]. IEEE Transactions on Signal Processing, 2016, 64(22): 6046–6057. doi: 10.1109/TSP.2016.2605075
    [11]
    刘福来, 陈萍萍, 汪晋宽, 等. 基于多参数二次规划的零陷展宽和旁瓣控制方法[J]. 东北大学学报:自然科学版, 2012, 33(11): 1559–1562.

    LIU Fulai, CHEN Pingping, WANG Jinkuan, et al. Null broadening and sidelobe control method based on multiparametric quadratic programming[J]. Journal of Northeastern University:Natural Science, 2012, 33(11): 1559–1562.
    [12]
    LEE C C and LEE J H. Eigenspace-based adaptive array beamforming with robust capabilities[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(12): 1711–1716. doi: 10.1109/8.650188
    [13]
    GU Yujie and LESHEM A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3881–3885. doi: 10.1109/TSP.2012.2194289
    [14]
    GU Yujie, GOODMAN N A, HONG Shaohua, et al. Robust adaptive beamforming based on interference covariance matrix sparse reconstruction[J]. Signal Processing, 2014, 96: 375–381. doi: 10.1016/j.sigpro.2013.10.009
    [15]
    YUAN Xiaolei and GAN Lu. Robust adaptive beamforming via a novel subspace method for interference covariance matrix reconstruction[J]. Signal Processing, 2017, 130: 233–242. doi: 10.1016/j.sigpro.2016.07.008
    [16]
    ZHENG Zhi, ZHENG Yan, WANG Wenqin, et al. Covariance matrix reconstruction with interference steering vector and power estimation for robust adaptive beamforming[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8495–8503. doi: 10.1109/TVT.2018.2849646
    [17]
    ZHANG Zhenyu, LIU Wei, LENG Wen, et al. Interference-plus-noise covariance matrix reconstruction via spatial power spectrum sampling for robust adaptive beamforming[J]. IEEE Signal Processing Letters, 2016, 23(1): 121–125. doi: 10.1109/LSP.2015.2504954
    [18]
    SUN Sicong and YE Zhongfu. Robust adaptive beamforming based on a method for steering vector estimation and interference covariance matrix reconstruction[J]. Signal Processing, 2021, 182: 107939. doi: 10.1016/j.sigpro.2020.107939
    [19]
    ZHU Xingyu, YE Zhongfu, XU Xu, et al. Covariance matrix reconstruction via residual noise elimination and interference powers estimation for robust adaptive beamforming[J]. IEEE Access, 2019, 7: 53262–53272. doi: 10.1109/ACCESS.2019.2912402
    [20]
    YANG Jian, LU Jian, LIU Xinxin, et al. Robust null broadening beamforming based on covariance matrix reconstruction via virtual interference sources[J]. Sensors, 2020, 20(7): 1865. doi: 10.3390/s20071865
    [21]
    GRANT M, BOYD S, and YE Y. CVX: Matlab software for disciplined convex programming, version 2.2[EB/OL]. http://cvxr.com/cvx, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (718) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return