Advanced Search
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
GAO Jian, ZHANG Yaozong, MENG Xiangrui, MA Fanghui. Weight Distributions of Some Classes of Irreducible Quasi-cyclic Codes of Index 2[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4312-4318. doi: 10.11999/JEIT211104
Citation: GAO Jian, ZHANG Yaozong, MENG Xiangrui, MA Fanghui. Weight Distributions of Some Classes of Irreducible Quasi-cyclic Codes of Index 2[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4312-4318. doi: 10.11999/JEIT211104

Weight Distributions of Some Classes of Irreducible Quasi-cyclic Codes of Index 2

doi: 10.11999/JEIT211104
Funds:  The National Natural Science Foundation of China (12071264,11701336, 11626144, 11671235), The Natural Science Foundation of Shandong Province (ZR2021QA047), The IC Program of Shandong Institutions of Higher Learning For Youth Innovative Talents
  • Received Date: 2021-10-11
  • Accepted Date: 2022-05-05
  • Rev Recd Date: 2022-04-18
  • Available Online: 2022-05-07
  • Publish Date: 2022-12-16
  • Few-weight linear codes have important applications in constructing authentication codes, association schemes and secret sharing schemes. How to construct few-weight linear codes has always been an important topic of coding theory. In this paper, irreducible quasi-cyclic codes of index 2 over finite fields are constructed by selecting a special defining set. The weight distribution of several classes of irreducible quasi-cyclic codes of index 2 are determined by using Gaussian periods over finite fields. Some classes of 2-weight linear codes and 3-weight linear codes are obtained. The results show that two of the three classes of 2-weight linear codes constructed in this paper are Maximum Distance Separable (MDS) codes and the other class reaches Griesmer bound.
  • loading
  • [1]
    DING Cunsheng and YANG Jing. Hamming weights in irreducible cyclic codes[J]. Discrete Mathematics, 2013, 313(4): 434–446. doi: 10.1016/j.disc.2012.11.009
    [2]
    BAE S, LI Chengju, and YUE Qin. On the complete weight enumerators of some reducible cyclic codes[J]. Discrete Mathematics, 2015, 338(12): 2275–2287. doi: 10.1016/j.disc.2015.05.016
    [3]
    管玥, 施敏加, 张欣, 等. 有限域上两类新的2-重量码的构造[J]. 电子学报, 2019, 47(3): 714–718. doi: 10.3969/j.issn.0372-2112.2019.03.028

    GUAN Yue, SHI Minjia, ZHANG Xin, et al. The construction of two new series of two-weight codes over finite fields[J]. Acta Electronica Sinica, 2019, 47(3): 714–718. doi: 10.3969/j.issn.0372-2112.2019.03.028
    [4]
    SHI Minjia, ZHU Shixin, and YANG Shanlin. A class of optimal p-ary codes from one-weight codes over $ {F_p}[u]/\langle {u^m}\rangle $ [J]. Journal of The Franklin Institute, 2013, 350(5): 929–937. doi: 10.1016/j.jfranklin.2012.05.014
    [5]
    SHI Minjia, GUAN Yue, and SLOÉ P. Two new families of two-weight codes[J]. IEEE Transaction on Information Theory, 2017, 63(10): 6240–6246. doi: 10.1109/TIT.2017.2742499
    [6]
    SHI Minjia, WU Rongsheng, LIU Yan, et al. Two and three weight codes over $ {F_p} + u{F_p} $ [J]. Cryptography and Communications, 2017, 9(5): 637–646. doi: 10.1007/s12095-016-0206-5
    [7]
    SHI Minjia and ZHANG Yiping. Quasi-twisted codes with constacyclic constituent codes[J]. Finite Fields and Their Applications, 2016, 39: 159–178. doi: 10.1016/j.ffa.2016.01.010
    [8]
    SHI Minjia, QIAN Liqin, and SLOÉ P. On self-dual negacirculant codes of index two and four[J]. Designs, Codes and Cryptography, 2018, 86(11): 2485–2494. doi: 10.1007/s10623-017-0455-0
    [9]
    杜小妮, 吕红霞, 王蓉. 一类四重和六重线性码的构造[J]. 电子与信息学报, 2019, 41(12): 2995–2999. doi: 10.11999/JEIT180939

    DU Xiaoni, LÜ Hongxia, and WANG Rong. Construction of a class of linear codes with four-weight and six-weight[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2995–2999. doi: 10.11999/JEIT180939
    [10]
    DING Cunsheng. A class of three-weight and four-weight codes[M]. CHEE Y M, LI Chao, LING San, et al. Coding and Cryptology. IWCC 2009. Lecture Notes in Computer Science. Berlin: Springer, 2009: 34–42.
    [11]
    SCHMIDT B and WHITE C. All two-weight irreducible cyclic codes?[J]. Finite Fields and Their Applications, 2002, 8(1): 1–17. doi: 10.1006/ffta.2000.0293
    [12]
    ZHOU Zhengchun and DING Cunsheng. Seven classes of three-weight cyclic codes[J]. IEEE Transactions on Communications, 2013, 61(10): 4120–4126. doi: 10.1109/TCOMM.2013.072213.130107
    [13]
    BORGES J, FERNÁNDEZ-CÓRDOBA C, and TEN-VALLS R. $ {Z_2} $ -double cyclic codes[J]. Designs, Codes and Cryptography, 2018, 86(3): 463–479. doi: 10.1007/s10623-017-0334-8
    [14]
    GAO Jian, SHI Minjia, WU Tingting, et al. On double cyclic codes over $ {Z_4} $ [J]. Finite Fields and Their Applications, 2016, 39: 233–250. doi: 10.1016/j.ffa.2016.02.003
    [15]
    GAO Jian and HOU Xiaotong. $ {Z_4} $ -Double cyclic codes are asymptotically good[J]. IEEE Communications Letters, 2020, 24(8): 1593–1597. doi: 10.1109/LCOMM.2020.2992501
    [16]
    PATANKER N and SINGH S K. Weight distribution of a subclass of $ {Z_2} $ -double cyclic codes[J]. Finite Fields and Their Applications, 2019, 57: 287–308. doi: 10.1016/j.ffa.2019.03.003
    [17]
    MYERSON G. Period polynomials and Gauss sums for finite fields[J]. Acta Arithmetica, 1981, 39(3): 251–264. doi: 10.4064/aa-39-3-251-264
    [18]
    DIAO Lingyu, GAO Jian, and LU Jiyong. Some results on $ {Z_p}{Z_p}[v] $ -additive cyclic codes[J]. Advances in Mathematics of Communications, 2020, 14(4): 557–572. doi: 10.3934/amc.2020029
    [19]
    HOU Xiaotong and GAO Jian. $ {Z_p}{Z_p}[v] $ -additive cyclic codes are asymptotically good[J]. Journal of Applied Mathematics and Computing, 2021, 66(1/2): 871–884. doi: 10.1007/s12190-020-01466-w
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(7)

    Article Metrics

    Article views (446) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return