Advanced Search
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
LUO Peng, HU Zhenfeng, TIAN Shiwei, LIU Maliang. The Status and Trends of UWB Radar Integrated Circuit[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1176-1192. doi: 10.11999/JEIT211082
Citation: LUO Peng, HU Zhenfeng, TIAN Shiwei, LIU Maliang. The Status and Trends of UWB Radar Integrated Circuit[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1176-1192. doi: 10.11999/JEIT211082

The Status and Trends of UWB Radar Integrated Circuit

doi: 10.11999/JEIT211082
Funds:  The National Natural Science Foundation of China (61874082, 62090040, 62021004), The Industry-University-Academy Cooperation Program of Xidian University-Chongqing IC Innovation Research Institute (CQIRI-CXYHT-2021-02)
  • Received Date: 2021-09-30
  • Accepted Date: 2022-03-21
  • Rev Recd Date: 2022-03-18
  • Available Online: 2022-03-23
  • Publish Date: 2022-04-18
  • Ultra-Wide Band (UWB) system has the advantages of high transmission rate, low power consumption, high detection accuracy, strong penetration, high security, etc., so it has a wide range of applications to military, radar, biological detection, short-range communications, and high-precision positioning. And with the development of semiconductor technology, CMOS-based UWB radar chips have become a research hotspot. Many scholars and commercial companies have proposed UWB chips and systems with their own advantages. This paper summarizes the status and trends of key circuits and key technologies in UWB system.
  • loading
  • [1]
    RAZAVI B, AYTUR T, LAM C, et al. A UWB CMOS transceiver[J]. IEEE Journal of Solid-State Circuits, 2005, 40(12): 2555–2562. doi: 10.1109/JSSC.2005.857430
    [2]
    TSANG T K K and EL-GAMAL M N. Ultra-wideband (UWB) communications systems: An overview[C]. The 3rd International IEEE-NEWCAS Conference, Quebec, Canada, 2005.
    [3]
    CHEN Xiaomin and KIAEI S. Monocycle shapes for ultra wideband system[C]. 2002 IEEE International Symposium on Circuits and Systems, Phoenix-Scottsdale, USA, 2002.
    [4]
    NORIMATSU T, FUJIWARA R, KOKUBO M, et al. A UWB-IR transmitter with digitally controlled pulse generator[J]. IEEE Journal of Solid-State Circuits, 2007, 42(6): 1300–1309. doi: 10.1109/JSSC.2007.897137
    [5]
    ANDERSEN N, GRANHAUG K, MICHAELSEN J A, et al. A 118-mW pulse-based radar SoC in 55-nm CMOS for non-contact human vital signs detection[J]. IEEE Journal of Solid-State Circuits, 2017, 52(12): 3421–3433. doi: 10.1109/JSSC.2017.2764051
    [6]
    EBRAZEH A and MOHSENI P. 30 pJ/b, 67 Mbps, centimeter-to-meter range data telemetry with an IR-UWB wireless link[J]. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(3): 362–369. doi: 10.1109/TBCAS.2014.2328492
    [7]
    CHEN Fei, LI Yu, LIU Dang, et al. 3 A 1mW 1Mb/s 7.75-to-8.25GHz chirp-UWB transceiver with low peak-power transmission and fast synchronization capability[C]. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, USA, 2014.
    [8]
    ALLEBES E, SINGH G, HE Yuming, et al. 21.2 A 3-to-10GHz 180pJ/b IEEE802.15. 4z/4a IR-UWB coherent polar transmitter in 28nm CMOS with asynchronous amplitude pulse-shaping and injection-locked phase modulation[C]. 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2021.
    [9]
    SONG Haixin, LIU Dang, ZHANG Yining, et al. A 6.5–8.1-GHz communication/ranging VWB transceiver for secure wireless connectivity with enhanced bandwidth efficiency and ΔΣ energy detection[J]. IEEE Journal of Solid-State Circuits, 2020, 55(2): 219–232. doi: 10.1109/JSSC.2019.2953828
    [10]
    KIM N S and RABAEY J M. A high data-rate energy-efficient triple-channel UWB-based cognitive radio[J]. IEEE Journal of Solid-State Circuits, 2016, 51(4): 809–820. doi: 10.1109/JSSC.2015.2512934
    [11]
    LIU Dang, NI Xuwen, ZHOU Ranran, et al. A 0.42-mW 1-Mb/s 3- to 4-GHz transceiver in 0.18-μm CMOS with flexible efficiency, bandwidth, and distance control for IoT applications[J]. IEEE Journal of Solid-State Circuits, 2017, 52(6): 1479–1494. doi: 10.1109/JSSC.2017.2665644
    [12]
    CREPALDI M, LI Chen, DRONSON K, et al. An ultra-low-power interference-robust IR-UWB transceiver chipset using self-synchronizing OOK modulation[C]. 2010 IEEE International Solid-State Circuits Conference, San Francisco, USA, 2010.
    [13]
    TAGHIVAND M, RAJAVI Y, AGGARWAL K, et al. An energy harvesting 2×2 60 GHz transceiver with scalable data rate of 38-to-2450Mb/s for near-range communication[C].The IEEE 2014 Custom Integrated Circuits Conference, San Jose, USA, 2014.
    [14]
    BOURDEL S, BACHELET Y, GAUBERT J, et al. A 9-pJ/pulse 1.42-vpp OOK CMOS UWB pulse generator for the 3.1–10.6-GHz FCC band[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(1): 65–73. doi: 10.1109/TMTT.2009.2035959
    [15]
    ZHANG Zhe, LI Yongfu, MOUTHAAN K, et al. A miniature mode reconfigurable inductorless IR-UWB transmitter–receiver for wireless short-range communication and vital-sign sensing[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8(2): 294–305. doi: 10.1109/JETCAS.2018.2799930
    [16]
    LO Y T, YUI C C, and KIANG J F. OOK/BPSK-modulated impulse transmitters integrated with leakage-cancelling circuit[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1): 218–224. doi: 10.1109/TMTT.2012.2226746
    [17]
    CREPALDI M, ANGOTZI G N, and BERDONDINI L. A 0.34 mm² 1 Gb/s non-coherent UWB receiver architecture with pulse enhancement and double PLL clock/data packet recovery[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2019, 66(7): 2735–2748. doi: 10.1109/TCSI.2019.2898042
    [18]
    GENG Shuli, LIU Dang, LI Yanfeng, et al. A 13.3 mW 500 Mb/s IR-UWB transceiver with link margin enhancement technique for meter-range communications[J]. IEEE Journal of Solid-State Circuits, 2015, 50(3): 669–678. doi: 10.1109/JSSC.2015.2393815
    [19]
    LIU Dang, LIU Xiaofeng, RHEE W, et al. A 19.2mW 1Gb/s secure proximity transceiver with ISI pre-correction and hysteresis energy detection[C]. 2016 IEEE Radio Frequency Integrated Circuits Symposium, San Francisco, USA, 2016.
    [20]
    BAO Dongxuan, ZOU Zhuo, NEJAD M B, et al. A wirelessly powered UWB RFID sensor tag with time-domain analog-to-information interface[J]. IEEE Journal of Solid-State Circuits, 2018, 53(8): 2227–2239. doi: 10.1109/JSSC.2018.2825455
    [21]
    ZOU Zhuo, MENDOZA D S, WANG Peng, et al. A low-power and flexible energy detection IR-UWB receiver for RFID and wireless sensor networks[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2011, 58(7): 1470–1482. doi: 10.1109/TCSI.2011.2142930
    [22]
    LEE G, PARK J, JANG J, et al. An IR-UWB CMOS transceiver for high-data-rate, low-power, and short-range communication[J]. IEEE Journal of Solid-State Circuits, 2019, 54(8): 2163–2174. doi: 10.1109/JSSC.2019.2914584
    [23]
    KIM N S and RABAEY J M. A 1Gb/s energy efficient triple-channel UWB-based cognitive radio[C]. 2015 Symposium on VLSI Circuits, Kyoto, Japan, 2015.
    [24]
    WENTZLOFF D D and CHANDRAKASAN A P. A 47pJ/pulse 3.1-to-5GHz all-digital UWB transmitter in 90nm CMOS[C]. 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, USA, 2008.
    [25]
    KO J and GHARPUREY R. A pulsed UWB transceiver in 65 nm CMOS with four-element beamforming for 1 Gbps meter-range WPAN applications[J]. IEEE Journal of Solid-State Circuits, 2016, 51(5): 1177–1187. doi: 10.1109/JSSC.2016.2520402
    [26]
    GUNTURI P, EMANETOGLU N W, and KOTECKI D E. A 250-Mb/s data rate IR-UWB transmitter using current-reused technique[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(11): 4255–4265. doi: 10.1109/TMTT.2017.2695189
    [27]
    ZHAO Mingjian, LI Bin, and WU Zhaohui. 20-pJ/pulse 250 Mbps low-complexity CMOS UWB transmitter for 3–5 GHz applications[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(3): 158–160. doi: 10.1109/LMWC.2013.2245412
    [28]
    高吉. 超宽带脉冲雷达发射前端电路技术研究[D]. [硕士论文], 西安电子科技大学, 2019.

    GAO Ji. Research on transmitter front-end circuit technology of UWB pulsed radar[D]. [Master dissertation], Xidian University, 2019.
    [29]
    SIM S, KIM D W, and HONG S. A CMOS UWB pulse generator for 6–10 GHz applications[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(2): 83–85. doi: 10.1109/LMWC.2008.2011318
    [30]
    KOPTA V and ENZ C C. A 4-GHz low-power, multi-user approximate Zero-IF FM-UWB transceiver for IoT[J]. IEEE Journal of Solid-State Circuits, 2019, 54(9): 2462–2474. doi: 10.1109/JSSC.2019.2917837
    [31]
    LIU Maliang, XIAO Jinhai, LUO Peng, et al. Ultrawideband power-switchable transmitter with 17.7-dBm output power for see-through-wall radar[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(5): 1331–1335. doi: 10.1109/TVLSI.2020.2972687
    [32]
    YIN Yun, XIONG Liang, ZHU Yiting, et al. A compact dual-band digital Doherty power amplifier using parallel-combining transformer for cellular NB-IoT applications[C]. 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, USA, 2018.
    [33]
    LIU Yaohong, SHEELAVANT S, MERCURI M, et al. 9.3 A680 μW burst-chirp UWB radar transceiver for vital signs and occupancy sensing up to 15m distance[C]. 2019 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, USA, 2019: 166–168.
    [34]
    HAN H G, YU B G, and KIM T W. A 1.9-mm-precision 20-GHz direct-sampling receiver using time-extension method for indoor localization[J]. IEEE Journal of Solid-State Circuits, 2017, 52(6): 1509–1520. doi: 10.1109/JSSC.2017.2679068
    [35]
    PARK J, JANG J, LEE G, et al. A time domain artificial intelligence radar for hand gesture recognition using 33-GHz direct sampling[C]. 2019 Symposium on VLSI Circuits, Kyoto, Japan, 2019.
    [36]
    PARK P and KIM S. A continuous sweep-clock-based time-expansion impulse-radio radar[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2018, 65(9): 3049–3059. doi: 10.1109/TCSI.2018.2799986
    [37]
    KAO Y H and CHU T S. A direct-sampling pulsed time-of-flight radar with frequency-defined vernier digital-to-time converter in 65 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2015, 50(11): 2665–2677. doi: 10.1109/JSSC.2015.2472599
    [38]
    LAI C M, TAN K W, YU Liuyuan, et al. A UWB IR timed-array radar using time-shifted direct-sampling architecture[C]. 2012 Symposium on VLSI Circuits, Honolulu, USA, 2012.
    [39]
    TSENG S T, CHOU H C, HU B S, et al. Equivalent-time direct-sampling impulse-radio radar with rotatable cyclic vernier digital-to-time converter for wireless sensor network localization[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(1): 485–508. doi: 10.1109/TMTT.2017.2718510
    [40]
    TSENG S T, KAO Y H, PENG C C, et al. A 65-nm CMOS low-power impulse radar system for human respiratory feature extraction and diagnosis on respiratory diseases[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(4): 1029–1041. doi: 10.1109/TMTT.2016.2536029
    [41]
    HJORTLAND H A, WISLAND D T, LANDE T S, et al. Thresholded samplers for UWB impulse radar[C]. 2007 IEEE International Symposium on Circuits and Systems, New Orleans, USA, 2007.
    [42]
    陈龙. 超宽带脉冲雷达接收前端电路技术研究[D]. [硕士论文], 西安电子科技大学, 2019.

    CHEN Long. Research of ultra-wideband pulse radar receiver front-end circuit[D]. [Master dissertation], Xidian University, 2019.
    [43]
    LI Yubing, LI Xiuping, HUANG Zemeng, et al. A novel low-power notch-enhanced active filter for ultrawideband interferer rejected LNA[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(3): 1684–1697. doi: 10.1109/TMTT.2021.3053264
    [44]
    SEPIDBAND P and ENTESARI K. A CMOS wideband receiver resilient to out-of-band blockers using blocker detection and rejection[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(5): 2340–2355. doi: 10.1109/TMTT.2017.2783923
    [45]
    LI Nan, FENG Weiwei, and LI Xiuping. A CMOS 3–12-GHz ultrawideband low noise amplifier by dual-resonance network[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(4): 383–385. doi: 10.1109/LMWC.2017.2679203
    [46]
    PAN Zhijian, QIN Chuan, YE Zuochang, et al. Wideband inductorless low-power LNAs with Gm enhancement and noise-cancellation[J] IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(1): 26–38.
    [47]
    ZHANG Jiajun, ZHAO Dixian, and YOU Xiaohu. A 20-GHz 1.9-mW LNA Using gm -boost and current-reuse techniques in 65-nm CMOS for satellite communications[J]. IEEE Journal of Solid-State Circuits, 2020, 50(10): 2714–2723. doi: 10.1109/JSSC.2020.2995307
    [48]
    JANG J, OH J, KIM C Y, et al. A 79-GHz adaptive-gain and low-noise UWB radar receiver front-end in 65-nm CMOS[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(3): 859–867. doi: 10.1109/TMTT.2016.2523511
    [49]
    WANG Yong, LOU Liheng, CHEN Bo, et al. A 260-mW Ku-band FMCW transceiver for synthetic aperture radar sensor with 1.48-GHz bandwidth in 65-nm CMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(11): 4385–4399. doi: 10.1109/TMTT.2017.2700271
    [50]
    MIRBOZORGI S A, BAHRAMI H, SAWAN M, et al. A full-duplex wireless integrated transceiver for implant-to-air data communications[C]. 2015 IEEE Custom Integrated Circuits Conference, San Jose, USA, 2015: 1–4.
    [51]
    LIU Zhe, BOON C C, YU Xiaopeng, et al. A 0.061-mm2 1–11-GHz noise-canceling low-noise amplifier employing active feedforward with simultaneous current and noise reduction[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(6): 3093–3106. doi: 10.1109/TMTT.2021.3061290
    [52]
    BOZORG A and STASZEWSKI R B. A 0.02–4.5-GHz LN(T)A in 28-nm CMOS for 5G exploiting noise reduction and current reuse[J]. IEEE Journal of Solid-State Circuits, 2021, 56(2): 404–415. doi: 10.1109/JSSC.2020.3018680
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(30)  / Tables(2)

    Article Metrics

    Article views (1409) PDF downloads(346) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return