Advanced Search
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
HUAI Nan, ZENG Zhaofa, LI Jing, WANG Zhuo. Envelope-waveform Inversion Based on Multi-offset Ground Penetrating Radar Data[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1212-1221. doi: 10.11999/JEIT211078
Citation: HUAI Nan, ZENG Zhaofa, LI Jing, WANG Zhuo. Envelope-waveform Inversion Based on Multi-offset Ground Penetrating Radar Data[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1212-1221. doi: 10.11999/JEIT211078

Envelope-waveform Inversion Based on Multi-offset Ground Penetrating Radar Data

doi: 10.11999/JEIT211078
Funds:  The National Natural Science Foundation of China (42174065), The Natural Science Foundation of Jilin Province (20200201216JC), The Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University (2021WHZ0080)
  • Received Date: 2021-10-08
  • Accepted Date: 2022-03-18
  • Rev Recd Date: 2022-03-18
  • Available Online: 2022-03-23
  • Publish Date: 2022-04-18
  • At present, initial model dependence is one of the most famous problem in Full-Waveform Inversion (FWI). It is very important to use the low-frequency components to build an accurate initial model. However, insufficient low-frequency information is obtained in the field dataset of Ground Penetrating Radar (GPR), which makes it difficult ensure accurate results for FWI. Therefore, an envelope-waveform inversion method based on multi-offset GPR data is proposed, which uses the envelope operator to build a large-scale background model and describe small-scale targets. Compared with the results of conventional FWI, the envelope-waveform inversion can effectively reconstruct the missing low-frequency components and improve the imaging effect of underground large-scale background structure and detail information.
  • loading
  • [1]
    KLEWE T, STRANGFELD C, and KRUSCHWITZ S. Review of moisture measurements in civil engineering with ground penetrating radar – applied methods and signal features[J]. Construction and Building Materials, 2021, 278: 122250. doi: 10.1016/j.conbuildmat.2021.122250
    [2]
    ŠIPOŠ D and GLEICH D. A lightweight and low-power UAV-borne ground penetrating radar design for landmine detection[J]. Sensors, 2020, 20(8): 2234. doi: 10.3390/s20082234
    [3]
    LOOMS M C, JENSEN K H, BINLEY A, et al. Monitoring unsaturated flow and transport using cross-borehole geophysical methods[J]. Vadose Zone Journal, 2008, 7(1): 227–237. doi: 10.2136/vzj2006.0129
    [4]
    LINDE N, BINLEY A, TRYGGVASON A, et al. Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data[J]. Water Resources Research, 2006, 42(12): W12404. doi: 10.1029/2006WR005131
    [5]
    IWASAKI K, TAMURA M, SATO H, et al. Application of ground-penetrating radar and a combined penetrometer-moisture probe for evaluating spatial distribution of soil moisture and soil hardness in coastal and inland windbreaks[J]. Geosciences, 2020, 10(6): 238. doi: 10.3390/geosciences10060238
    [6]
    GAO Peng, WANG Ruiyan, ZHAO Gengxing, et al. The application of GPR to the detection of soil wetted bodies formed by drip irrigation[J]. PLoS One, 2020, 15(7): e0235489. doi: 10.1371/journal.pone.0235489
    [7]
    CARCIONE J M. Ground radar simulation for archaeological applications[J]. Geophysical Prospecting, 1996, 44(5): 871–888. doi: 10.1111/j.1365-2478.1996.tb00178.x
    [8]
    WANG Zhuo, ZENG Zhaofa, and ZHANG Ling. Ground penetrating radar exploration at archaeological site in Shi Village, Xia County, Shanxi Province[C]. The 9th International Conference on Environmental and Engineering Geophysics, Changchun, China, 2020: 012117.
    [9]
    JACOB R W, TROP J M, and KOCHEL R G. Subsurface architecture of alpine icy debris fans: Integration of ground-penetrating radar and surface observations in Alaska and New Zealand[J]. Geomorphology, 2021, 375: 107544. doi: 10.1016/j.geomorph.2020.107544
    [10]
    DING Chunyu, XIAO Zhiyong, WU Bo, et al. Rock fragments in shallow lunar regolith: Constraints by the lunar penetrating radar onboard the Chang'E-4 mission[J]. Journal of Geophysical Research:Planets, 2021, 126(9): e2021JE006917. doi: 10.1029/2021JE006917
    [11]
    GIANNAKIS I, ZHOU Feng, WARREN C, et al. Inferring the shallow layered structure at the Chang’E-4 landing site: A novel interpretation approach using lunar penetrating radar[J]. Geophysical Research Letter, 2021, 48(16): e2021GL092866. doi: 10.1029/2021GL092866
    [12]
    LAVOUÉ F, BROSSIER R, MÉTIVIER L, et al. Two-dimensional permittivity and conductivity imaging by full waveform inversion of multioffset GPR data: A frequency-domain quasi-newton approach[J]. Geophysical Journal International, 2014, 197(1): 248–268. doi: 10.1093/gji/ggt528
    [13]
    FENG Xuan, REN Qianci, and LIU Cai. Quantitative imaging for civil engineering by joint full waveform inversion of surface-based GPR and shallow seismic reflection data[J]. Construction and Building Materials, 2017, 154: 1173–1182. doi: 10.1016/j.conbuildmat.2017.07.033
    [14]
    FENG Xuan, REN Qianci, LIU Cai, et al. Joint acoustic full-waveform inversion of crosshole seismic and ground-penetrating radar data in the frequency domain[J]. Geophysics, 2017, 82(6): H41–H56. doi: 10.1190/geo2016-0008.1
    [15]
    FENG Deshan, CAO Cen, and WANG Xun. Multiscale full-waveform dual-parameter inversion based on total variation regularization to on-ground GPR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9450–9465. doi: 10.1109/TGRS.2019.2926626
    [16]
    王珣, 冯德山, 王向宇. 基于改进全变差正则化的GPR多尺度全波形双参数同步反演[J]. 地球物理学报, 2020, 63(12): 4485–4501. doi: 10.6038/cjg2020N0130

    WANG Xun, FENG Deshan, and WANG Xiangyu. GPR multiple-scale full waveform dual-parameter simultaneous inversion based on modified total variation regularization[J]. Chinese Journal of Geophysics, 2020, 63(12): 4485–4501. doi: 10.6038/cjg2020N0130
    [17]
    HUAI Nan, ZENG Zhaofa, LI Jing, et al. Model-based layer stripping FWI with a stepped inversion sequence for GPR data[J]. Geophysical Journal International, 2019, 218(2): 1032–1043. doi: 10.1093/gji/ggz210
    [18]
    VIRIEUX J and OPERTO S. An overview of full-waveform inversion in exploration geophysics[J]. Geophysics, 2009, 74(6): WCC1–WCC26. doi: 10.1190/1.3238367
    [19]
    BOZDAĞ E, TRAMPERT J, and TROMP J. Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements[J]. Geophysical Journal International, 2011, 185(2): 845–870. doi: 10.1111/j.1365-246X.2011.04970.x
    [20]
    CHI Benxin, DONG Liangguo, and LIU Yuzhu. Full waveform inversion based on envelope objective function[C]. The 75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013, London, UK, 2013: Tu-P04–09.
    [21]
    CHI Benxin, DONG Liangguo, and LIU Yuzhu. Full waveform inversion method using envelope objective function without low frequency data[J]. Journal of Applied Geophysics, 2014, 109: 36–46. doi: 10.1016/j.jappgeo.2014.07.010
    [22]
    WU Rushan, LUO Jingrui, and WU Bangyu. Ultra-low-frequency information in seismic data and envelope inversion[C]. SEG Technical Program Expanded Abstracts 2013, 2013: 3078–3082.
    [23]
    WU Rushan, LUO Jingrui, and WU Bangyu. Seismic envelope inversion and modulation signal model[J]. Geophysics, 2014, 79(3): WA13–WA24. doi: 10.1190/geo2013-0294.1
    [24]
    刘新彤, 刘四新, 孟旭, 等. 低频缺失下跨孔雷达包络波形反演[J]. 吉林大学学报:地球科学版, 2018, 48(2): 474–482. doi: 10.13278/j.cnki.jjuese.20170281

    LIU Xintong, LIU Sixin, MENG Xu, et al. Envelope waveform inversion of cross-hole radar without low frequency data[J]. Journal of Jilin University:Earth Science Edition, 2018, 48(2): 474–482. doi: 10.13278/j.cnki.jjuese.20170281
    [25]
    BUNKS C, SALECK F M, ZALESKI S, et al. Multiscale seismic waveform inversion[J]. Geophysics, 1995, 60(5): 1457–1473. doi: 10.1190/1.1443880
    [26]
    BOONYASIRIWAT C, VALASEK P, ROUTH P, et al. An efficient multiscale method for time-domain waveform tomography[J]. Geophysics, 2009, 74(6): WCC59–WCC68. doi: 10.1190/1.3151869
    [27]
    MELES G A, GREENHALGH S, GREEN A, et al. GPR full-waveform sensitivity and resolution analysis using an FDTD adjoint method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1881–1896. doi: 10.1109/TGRS.2011.2170078
    [28]
    LI Jing, BAI Lige, and LIU Hai. Numerical verification of full waveform inversion for the Chang’E-5 lunar regolith penetrating array radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5903710. doi: 10.1109/TGRS.2021.3098104
    [29]
    PLESSIX R E. A review of the adjoint‐state method for computing the gradient of a functional with geophysical applications[J]. Geophysical Journal International, 2006, 167(2): 495–503. doi: 10.1111/j.1365-246X.2006.02978.x
    [30]
    CASTELLANOS C, ETIENNE V, HU Guanghui, et al. Algorithmic and methodological developments towards full waveform inversion in 3D elastic media[C]. SEG Technical Program Expanded Abstracts 2011, 2011: 2793–2798.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (806) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return