Advanced Search
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
TIAN Xiuwen, SONG Lizhong. A Reconfgurable Transmitarray Based on Row-column Beamsteering Method[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4104-4110. doi: 10.11999/JEIT211057
Citation: TIAN Xiuwen, SONG Lizhong. A Reconfgurable Transmitarray Based on Row-column Beamsteering Method[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4104-4110. doi: 10.11999/JEIT211057

A Reconfgurable Transmitarray Based on Row-column Beamsteering Method

doi: 10.11999/JEIT211057
Funds:  The National Natural Science Foundation of China (61971157), The Foundation of the Key Laboratory of Science and Technology for National Defense (6142401200401), The Science Foundation of Aeronautics of China (201901077005), The Research Project on Civil Aerospace Technology in Advance(D040301)
  • Received Date: 2021-09-29
  • Accepted Date: 2022-01-20
  • Rev Recd Date: 2022-01-15
  • Available Online: 2022-02-03
  • Publish Date: 2022-12-10
  • In this paper, to simplify the control circuit of the Reconfigurable TransmitArray(RTA), a RTA based on row-column beamsteering method is proposed, which is composed of a double-layer Frequency Selective Surfaces(FSS). By tunning a capacitance value of the varactor intergrated in the frequency selective surface element, the RTA element can tune the transmission phase. At the same time, a row-column beamsteering method is used to tune a Direction Current (DC) bias voltage between the ports of the varactor, while a line can tune the DC bias voltage at each row elements or each column elements of the RTA. Due to the limited phase range of the RTA element, a phase-correction method is also utilized to reduce the elements phase error during 2-D beamscanning. The scanned beam results show that the scanned beam angle can reach 39° with –1.7 dB gain loss in E-plane and can reach 33° with –3 dB gain loss in H-plane. The RTA has the advantages of simple 2-D beam-steering circuit and low cost, the proposed RTA has great potential for radar system and modern communication system application.
  • loading
  • [1]
    徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363

    XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics &Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363
    [2]
    RAO J B L, TRUNK G V, and PATEL D P. Two low-cost phased arrays[J]. IEEE Aerospace and Electronic Systems Magazine, 1997, 12(6): 39–44. doi: 10.1109/PAST.1996.565948
    [3]
    VELJOVIC M and SKRIVERVIK A K. Ultralow-profile circularly polarized reflectarray antenna for CubeSat intersatellite links in K-band[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 4588–4597. doi: 10.1109/TAP.2021.3060076
    [4]
    TRAMPLER M E, LOVATO R E, and GONG Xun. Dual-resonance continuously beam-scanning X-band reflectarray antenna[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8): 6080–6087. doi: 10.1109/TAP.2020.2989559
    [5]
    GUO Lu, YU Huiting, CHE Wenquan, et al. A broadband reflectarray antenna using single-layer rectangular patches embedded with inverted l-shaped slots[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3132–3139. doi: 10.1109/TAP.2019.2900382
    [6]
    YANG Shuyang, YAN Zehong, CAI Mingbo, et al. A high-efficiency double-layer transmitarray antenna using low-loss dual-linearly polarized elements[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2378–2382. doi: 10.1109/LAWP.2020.3033460
    [7]
    YI Xiangjie, SU Tao, LI Xi, et al. A Double-layer wideband transmitarray antenna using two degrees of freedom elements around 20 GHz[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2798–2802. doi: 10.1109/TAP.2019.2893265
    [8]
    YI Huan, QU Shiwei, NG K B, et al. Terahertz wavefront control on both sides of the cascaded metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 209–216. doi: 10.1109/TAP.2017.2772021
    [9]
    DENG Ruyuan, XU Shenheng, YANG Fan, et al. An FSS-Backed Ku/Ka quad-band reflectarray antenna for satellite communications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8): 4353–4358. doi: 10.1109/TAP.2018.2835725
    [10]
    MENG Fanji and SHARMA S K. A wideband resonant cavity antenna with compact partially reflective surface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1155–1160. doi: 10.1109/TAP.2019.2938589
    [11]
    AZIZ A, YANG Fan, XU Shenheng, et al. A high-gain dual-band and dual-polarized transmitarray using novel loop elements[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(6): 1213–1217. doi: 10.1109/LAWP.2019.2912645
    [12]
    CHEN Ke, Feng Yijun, MONTICONE F, et al. A reconfigurable active Huygens’ metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi: 10.1002/adma.201606422
    [13]
    ZHU Boo, CHEN Ke, JIA Nan, et al. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface[J]. Scientific Reports, 2014, 4: 4971. doi: 10.1038/srep04971.
    [14]
    JIANG Tao, WANG Zhiyu, LI Dong, et al. Low-DC voltage-controlled steering-antenna radome utilizing tunable active metamaterial[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(1): 170–178. doi: 10.1109/TMTT.2011.2171981
    [15]
    REIS J R, CALDEIRINHA R F S, HAMMOUDEH A, et al. Electronically reconfigurable FSS-inspired transmitarray for 2-D beamsteering[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4880–4885. doi: 10.1109/TAP.2017.2723087
    [16]
    HUANG Cheng, PAN Wenbo, and LUO Xiangang. Low-loss circularly polarized transmitarray for beam steering application[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4471–4476. doi: 10.1109/TAP.2016.2586580
    [17]
    HUANG Cheng, PAN Wenbo, MA Xiaoliang, et al. Using reconfigurable transmitarray to achieve beam-steering and polarization manipulation applications[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4801–4810. doi: 10.1109/TAP.2015.2479648
    [18]
    LUO Chuanwei, ZHAO Gang, JIAO Yongchang, et al. Wideband 1 bit reconfigurable transmitarray antenna based on polarization rotation element[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(5): 798–802. doi: 10.1109/LAWP.2021.3063539
    [19]
    WANG Yu, XU Shenheng, CAO Fan, et al. 1 bit dual-linear polarized reconfigurable transmitarray antenna using asymmetric dipole elements with parasitic bypass dipoles[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 1188–1192. doi: 10.1109/TAP.2020.3005713
    [20]
    LI Huan, MA Chao, ZHOU Tianyi, et al. Reconfigurable Fresnel lens based on an active second-order bandpass frequency-selective surface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(5): 4054–4059. doi: 10.1109/TAP.2019.2948392
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (715) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return