Advanced Search
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
DING Yipeng, LIU Runjin. A Target Location Algorithm for Through-wall Radar Based on Improved Viterbi Frequency Estimation Technology[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1203-1211. doi: 10.11999/JEIT211052
Citation: DING Yipeng, LIU Runjin. A Target Location Algorithm for Through-wall Radar Based on Improved Viterbi Frequency Estimation Technology[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1203-1211. doi: 10.11999/JEIT211052

A Target Location Algorithm for Through-wall Radar Based on Improved Viterbi Frequency Estimation Technology

doi: 10.11999/JEIT211052
Funds:  The National Natural Science Foundation of China (61501525), The Special Foundation of Innovative Province Construction of Hunan (2020RC3004)
  • Received Date: 2021-09-28
  • Accepted Date: 2022-01-20
  • Rev Recd Date: 2022-01-16
  • Available Online: 2022-02-24
  • Publish Date: 2022-04-18
  • Considering the problem of target signal identification in frequency ambiguity region of Doppler through wall radar, and the path bifurcation problem of traditional Viterbi algorithm in instantaneous frequency estimation, a target location algorithm based on improved Viterbi frequency estimation technology is proposed. According to the local characteristics of radar echo, the smoothing coefficient of exponential smoothing method is dynamically adjusted, and a new penalty function based on dynamic exponential smoothing prediction is defined. The echo signal is demodulated by the estimated target frequency curve to separate multiple target components, and the target motion trajectory is synthesized by combining Doppler processing to realize real-time target positioning. The experimental results show that the path bifurcation problem in frequency ambiguity region is effectively suppressed by this method, and this method has advantages in the application scene of multi-body target tracking and location. In addition, the employed dynamic search method enhances upon traditional whole-plane search and improves the efficiency of searching the optimal paths considerably.
  • loading
  • [1]
    ZHU Fang, WANG Kuangda, and WU Ke. A fundamental-and-harmonic dual-frequency Doppler radar system for vital signs detection enabling radar movement self-cancellation[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(11): 5106–5118. doi: 10.1109/TMTT.2018.2869591
    [2]
    ZHAO Ganlin, LIANG Qilian, and DURRANI T S. UWB radar target detection based on hidden Markov models[J]. IEEE Access, 2018, 6: 28702–28711. doi: 10.1109/ACCESS.2018.2839690
    [3]
    杨宏宇, 王峰岩. 基于深度卷积神经网络的气象雷达噪声图像语义分割方法[J]. 电子与信息学报, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098

    YANG Hongyu and WANG Fengyan. Meteorological radar noise image semantic segmentation method based on deep convolutional neural network[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098
    [4]
    DING Yipeng, SUN Yinhua, YU Xiali, et al. Bezier-based Hough transforms for Doppler localization of human targets[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(1): 173–177. doi: 10.1109/LAWP.2019.2956842
    [5]
    ABDOUSH Y, POJANI G, and CORAZZA G E. Adaptive instantaneous frequency estimation of multicomponent signals based on linear time–frequency transforms[J]. IEEE Transactions on Signal Processing, 2019, 67(12): 3100–3112. doi: 10.1109/TSP.2019.2912132
    [6]
    蒋留兵, 周小龙, 车俐. 基于无载波超宽带雷达的小样本人体动作识别[J]. 电子学报, 2020, 48(3): 602–615. doi: 10.3969/j.issn.0372-2112.2020.03.025

    JIANG Liubing, ZHOU Xiaolong, and CHE Li. Few-shot learning for human motion recognition based on carrier-free UWB radar[J]. Acta Electronica Sinica, 2020, 48(3): 602–615. doi: 10.3969/j.issn.0372-2112.2020.03.025
    [7]
    ZÃO L and COELHO R. On the estimation of fundamental frequency from nonstationary noisy speech signals based on the Hilbert–Huang transform[J]. IEEE Signal Processing Letters, 2018, 25(2): 248–252. doi: 10.1109/LSP.2017.2782267
    [8]
    张林, 李秀友, 刘宁波, 等. 基于分形特性改进的EMD目标检测算法[J]. 电子与信息学报, 2016, 38(5): 1041–1046. doi: 10.11999/JEIT150731

    ZHANG Lin, LI Xiuyou, LIU Ningbo, et al. Improved EMD target detection method based on mono fractal characteristics[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1041–1046. doi: 10.11999/JEIT150731
    [9]
    WU Wei, WANG Guohong, and SUN Jinping. Polynomial Radon-Polynomial Fourier transform for near space hypersonic maneuvering target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1306–1322. doi: 10.1109/TAES.2017.2780658
    [10]
    DJUROVIĆ I and STANKOVIĆ L. An algorithm for the Wigner distribution based instantaneous frequency estimation in a high noise environment[J]. Signal Processing, 2004, 84(3): 631–643. doi: 10.1016/j.sigpro.2003.12.006
    [11]
    LI Po and ZHANG Qinghai. An improved Viterbi algorithm for IF extraction of multicomponent signals[J]. Signal, Image and Video Processing, 2018, 12(1): 171–179. doi: 10.1007/s11760-017-1143-2
    [12]
    苏小凡, 肖瑞, 朱明哲. 一种多分量调频信号瞬时频率估计方法[J]. 西安电子科技大学学报, 2019, 46(1): 51–56. doi: 10.19665/j.issn1001-2400.2019.01.009

    SU Xiaofan, XIAO Rui, and ZHU Mingzhe. Method for IF estimation of multicomponent FM signals[J]. Journal of Xidian University, 2019, 46(1): 51–56. doi: 10.19665/j.issn1001-2400.2019.01.009
    [13]
    RITCHIE M, ASH M, CHEN Qingchao, et al. Through wall radar classification of human micro-Doppler using singular value decomposition analysis[J]. Sensors, 2016, 16(9): 1401. doi: 10.3390/s16091401
    [14]
    LIN A and LING Hao. Doppler and direction-of-arrival (DDOA) radar for multiple-mover sensing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1496–1509. doi: 10.1109/TAES.2007.4441754
    [15]
    AHMAD F, AMIN M G, and ZEMANY P D. Performance analysis of dual-frequency CW radars for motion detection and ranging in urban sensing applications[C]. SPIE 6547 Radar Sensor Technology XI, Orlando, USA, 2007: 65470K.
    [16]
    LU Huitian, KOLARIK W J, and LU S S. Real-time performance reliability prediction[J]. IEEE Transactions on Reliability, 2001, 50(4): 353–357. doi: 10.1109/24.983393
    [17]
    DING Yipeng, LEI Chengxi, XU Xuemei, et al. Human micro-Doppler frequency estimation approach for Doppler radar[J]. IEEE Access, 2018, 6: 6149–6159. doi: 10.1109/ACCESS.2018.2793277
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (454) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return