Citation: | DING Yipeng, SHE Yanlong. Research Status and Prospect of Human Movement Recognition Technique Using Through-Wall Radar[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1156-1175. doi: 10.11999/JEIT211051 |
[1] |
刘云, 薛盼盼, 李辉, 等. 基于深度学习的关节点行为识别综述[J]. 电子与信息学报, 2021, 43(6): 1789–1802. doi: 10.11999/JEIT200267
LIU Yun, XUE Panpan, LI Hui, et al. A review of action recognition using joints based on deep learning[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1789–1802. doi: 10.11999/JEIT200267
|
[2] |
罗会兰, 童康, 孔繁胜. 基于深度学习的视频中人体动作识别进展综述[J]. 电子学报, 2019, 47(5): 1162–1173. doi: 10.3969/j.issn.0372-2112.2019.05.025
LUO Huilan, TONG Kang, and KONG Fansheng. The progress of human action recognition in videos based on deep learning: A review[J]. Acta Electronica Sinica, 2019, 47(5): 1162–1173. doi: 10.3969/j.issn.0372-2112.2019.05.025
|
[3] |
黄华宾. 遮蔽人体目标行为识别方法研究[D]. [硕士论文], 电子科技大学, 2019.
HUANG Huabin. Research on method of hiden human targets behavior recognition[D]. [Master dissertation], University of Electronic Science and Technology of China, 2019.
|
[4] |
CICCHETTI R, PISA S, PIUZZI E, et al. Numerical and experimental comparison among a new hybrid FT-music technique and existing algorithms for through-the-wall radar imaging[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(7): 3372–3387. doi: 10.1109/TMTT.2021.3061500
|
[5] |
金添, 宋勇平. 穿墙雷达人体目标探测技术综述[J]. 电波科学学报, 2020, 35(4): 486–495. doi: 10.13443/j.cjors.2020040804
JIN Tian and SONG Yongping. Review on human target detection using through-wall radar[J]. Chinese Journal of Radio Science, 2020, 35(4): 486–495. doi: 10.13443/j.cjors.2020040804
|
[6] |
王宏. 超宽带穿墙雷达成像及多普勒特性研究[D]. [博士论文], 电子科技大学, 2010.
WANG Hong. Study of UWB through-wall imaging and Doppler characteristic[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2010.
|
[7] |
TAYLOR J D, 胡明春, 王建明, 孙俊, 等译. 超宽带雷达应用与设计[M]. 北京: 电子工业出版社, 2017: 328–340.
TAYLOR J D, HU Mingchun, WANG Jianming, SUN Jun, et al. translation. Ultrawideband Radar: Applications and Design[M]. Beijing: Publishing House of Electronics Industry Press, 2017: 328–340.
|
[8] |
GAUGUE A C and POLITANO J L. Overview of current technologies for through-the-wall surveillance[C]. SPIE 5989, Technologies for Optical Countermeasures II; Femtosecond Phenomena II; and Passive Millimetre-Wave and Terahertz Imaging II, Bruges, Belgium, 2005: 59891H.
|
[9] |
BOREK S E. An overview of through the wall surveillance for homeland security[C]. 34th Applied Imagery and Pattern Recognition Workshop (AIPR'05), Washington, USA, 2006: 1–6.
|
[10] |
狄培. 便携式穿墙雷达成像技术研究[D]. [硕士论文], 西安电子科技大学, 2019.
DI Pei. Research on portable through-wall radar imaging technology[D]. [Master dissertation], Xidian University, 2019.
|
[11] |
北京凌天智能装备集团股份有限公司. YSR-120 手持式穿墙雷达 [EB/OL]. https://www.bjltsj.com/ html/product/1004.html, 2015.
BEIJING TOPSKY INTELLIGENT EQUIPMENT GROUP Co.,Ltd. YSR-120 Handheld, Through Wall Radar [EB/OL]. https://www.bjltsj.com/ html/product/1004.html, 2015.
|
[12] |
华诺星空股份有限公司. 军事反恐救援利器: 二维定位—CE系列穿墙雷达[EB/OL]. http://www.insight-safety.com/productinfo/243693.html, 2009.
|
[13] |
郭山红, 孙锦涛, 谢仁宏, 等. 电磁波穿透墙体的衰减特性[J]. 强激光与粒子束, 2009, 21(1): 113–117.
GUO Shanhong, SUN Jintao, XIE Renhong, et al. Attenuation characteristics of electromagnetic wave penetrating walls[J]. High Power Laser and Particle Beams, 2009, 21(1): 113–117.
|
[14] |
DING Yipeng, YU Xiali, ZHANG Juan, et al. Application of linear predictive coding and data fusion process for target tracking by Doppler through-wall radar[J]. IEEE Transactions on Microwave theory and Techniques, 2019, 67(3): 1244–1254. doi: 10.1109/TMTT.2018.2885973
|
[15] |
QI Fugui, LI Zhao, MA Yangyang, et al. Generalization of channel micro-Doppler capacity evaluation for improved finer-grained human activity classification using MIMO UWB radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 4748–4761. doi: 10.1109/TMTT.2021.3076055
|
[16] |
TROMMEL R P, HARMANNY R I A, CIFOLA L, et al. Multi-target human gait classification using deep convolutional neural networks on micro-Doppler spectrograms[C]. 2016 European Radar Conference (EuRAD), London, UK, 2016: 81–84.
|
[17] |
CHUMA E L and IANO Y. A movement detection system using continuous-wave Doppler radar sensor and convolutional neural network to detect cough and other gestures[J]. IEEE Sensors Journal, 2021, 21(3): 2921–2928. doi: 10.1109/JSEN.2020.3028494
|
[18] |
ZHENG Chen, XI Xiaoli, SONG Zhongguo, et al. Multilevel delay lock loop approach for wall clutter mitigation in through-the-wall radar imaging[J]. IET Microwaves, Antennas & Propagation, 2018, 12(12): 1986–1992. doi: 10.1049/iet-map.2018.5234
|
[19] |
SOLIMENE R and CUCCARO A. Front wall clutter rejection methods in TWI[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1158–1162. doi: 10.1109/LGRS.2013.2288491
|
[20] |
YOON Y S and AMIN M G. Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(9): 3192–3208. doi: 10.1109/TGRS.2009.2019728
|
[21] |
DING Yipeng, TANG Jingtian, XU Xuemei, et al. Echo interference suppression approach for Doppler through-wall radar[J]. IEEE Sensors Journal, 2015, 15(6): 3395–3402. doi: 10.1109/JSEN.2014.2374419
|
[22] |
郑晨, 席晓莉, 宋忠国, 等. 基于子空间技术中奇异向量分析的穿墙雷达杂波抑制方法[J]. 电子学报, 2019, 47(4): 848–854. doi: 10.3969/j.issn.0372-2112.2019.04.012
ZHENG Chen, XI Xiaoli, SONG Zhongguo, et al. A singular vector stationarity method for clutter mitigation in through-the-wall radar based on subspace method[J]. Acta Electronica Sinica, 2019, 47(4): 848–854. doi: 10.3969/j.issn.0372-2112.2019.04.012
|
[23] |
李家强, 徐小敏, 卢宝宝, 等. 倾斜阵列下奇异值分解穿墙雷达杂波抑制[J]. 雷达科学与技术, 2019, 17(5): 531–537. doi: 10.3969/j.issn.1672-2337.2019.05.010
LI Jiaqiang, XU Xiaomin, LU Baobao, et al. Clutter reduction of through-the-wall radar based on singular value decomposition under tilted array[J]. Radar Science and Technology, 2019, 17(5): 531–537. doi: 10.3969/j.issn.1672-2337.2019.05.010
|
[24] |
赵中兴, 孔令讲, 贾勇, 等. 一种有效的穿墙雷达成像杂波抑制算法[J]. 雷达科学与技术, 2014, 12(1): 51–57. doi: 10.3969/j.issn.1672-2337.2014.01.009
ZHAO Zhongxing, KONG Lingjiang, JIA Yong, et al. An Efficient clutter reduction method in through-wall-radar imaging[J]. Radar Science and Technology, 2014, 12(1): 51–57. doi: 10.3969/j.issn.1672-2337.2014.01.009
|
[25] |
韩银萍, 刘丽, 王冰洁, 等. 基于鲁棒主成分分析的混沌穿墙成像雷达杂波抑制方法[J]. 电子器件, 2020, 43(1): 142–146. doi: 10.3969/j.issn.1005-9490.2020.01.029
HAN Yinping, LIU Li, WANG Bingjie, et al. Clutter removal using robust principal component analysis for chaos through-wall imaging radar[J]. Chinese Journal of Electron Devices, 2020, 43(1): 142–146. doi: 10.3969/j.issn.1005-9490.2020.01.029
|
[26] |
黄臣, 刘宏清, 罗臻, 等. 一种低秩联合稀疏模型下的杂波抑制方法[J]. 西安电子科技大学学报, 2019, 46(6): 60–66. doi: 10.19665/j.issn1001-2400.2019.06.009
HUANG Chen, LIU Hongqing, LUO Zhen, et al. Method for suppressing clutters with the joint low rank and sparse model[J]. Journal of Xidian University, 2019, 46(6): 60–66. doi: 10.19665/j.issn1001-2400.2019.06.009
|
[27] |
WATERS A E, SANKARANARAYANAN A C, and BARANIUK R G. SpaRCS: Recovering low-rank and sparse matrices from compressive measurements[C]. The 24th International Conference on Neural Information Processing Systems (NIPS), Granada, Spain, 2011: 1089–1097.
|
[28] |
宋勇平, 金添, 陆必应, 等. 一种新的MIMO线阵穿墙成像模型及其环境参数估计[J]. 电子与信息学报, 2014, 36(12): 2980–2985. doi: 10.3724/SP.J.1146.2014.00018
SONG Yongping, JIN Tian, LU Biying, et al. A novel linear MIMO array through-the-wall imaging model and its associated environmental parameters estimation[J]. Journal of Electronics &Information Technology, 2014, 36(12): 2980–2985. doi: 10.3724/SP.J.1146.2014.00018
|
[29] |
LEE D, FONG B, MORITA P, et al. Imaging of walking human behind the wall using impulse radar[C]. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, Canada, 2020: 1263–1264.
|
[30] |
RENEAU J and ADHAMI R R. Phase-coded LFMCW waveform analysis for short range measurement applications[C]. 2014 IEEE Aerospace Conference, Big Sky, USA, 2014: 1–6.
|
[31] |
SHRAVANKUMAR S M, LENKA M K, and BANERJEE G. Integrated wideband frequency-hopping radar system for see-through-wall sensor application[C]. 2019 IEEE MTT-S International Microwave and RF Conference (IMARC), Mumbai, India, 2019: 1–7.
|
[32] |
夏正欢, 张群英, 叶盛波, 等. 一种便携式伪随机编码超宽带人体感知雷达设计[J]. 雷达学报, 2015, 4(5): 527–537. doi: 10.12000/JR15027
XIA Zhenghuan, ZHANG Qunying, YE Shengbo, et al. Design of a handheld pseudo random coded UWB radar for human sensing[J]. Journal of Radars, 2015, 4(5): 527–537. doi: 10.12000/JR15027
|
[33] |
王明阳. 穿墙雷达人体行为识别方法研究[D]. [博士论文], 电子科技大学, 2019.
WANG Mingyang. Research on human action recognition exploiting through-wall radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2019.
|
[34] |
胡志鹏. 超宽带MIMO雷达系统设计与穿墙成像方法研究[D]. [硕士论文], 吉林大学, 2020.
HU Zhipeng. Design of UWB MIMO radar system and research on the method of through-wall imaging[D]. [Master dissertation], Jilin University, 2020.
|
[35] |
ANDRE D, WATSON F, and FINNIS M. Multistatic dual-polarimetric through-wall 3D-SAR[C]. 13th European Conference on Synthetic Aperture Radar (EUSAR 2021), 2021: 1–4.
|
[36] |
GENNARELLI G and SOLDOVIERI F. A linear inverse scattering algorithm for radar imaging in multipath environments[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1085–1089. doi: 10.1109/LGRS.2012.2230314
|
[37] |
FEDELI A, PASTORINO M, PONTI C, et al. Forward and inverse scattering models applied to through-wall imaging[C]. 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020: 1–4.
|
[38] |
SOLDOVIERI F, AHMAD F, and SOLIMENE R. Validation of microwave tomographic inverse scattering approach via through-the-wall experiments in semicontrolled conditions[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(1): 123–127. doi: 10.1109/LGRS.2010.2051014
|
[39] |
ZHANG Wenji and HOORFAR A. Two-dimensional through-the-wall radar imaging with diffraction tomographic algorithm[C]. 2011 IEEE International Conference on Microwave Technology & Computational Electromagnetics, Beijing, China, 2011: 96–99.
|
[40] |
ZHANG Wenji and HOORFAR A. Three-dimensional synthetic aperture radar imaging through multilayered walls[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 459–462. doi: 10.1109/TAP.2013.2287274
|
[41] |
孟庆阳. 微波逆散射成像中的若干问题研究[D]. [博士论文], 浙江大学, 2017.
MENG Qingyang. Several researches on microwave inverse scattering imaging[D]. [Ph. D. dissertation], Zhejiang University, 2017.
|
[42] |
蔡继亮, 童创明, 姬伟杰. 超宽带穿墙雷达成像技术研究现状[J]. 电讯技术, 2012, 52(9): 1541–1546. doi: 10.3969/j.issn.1001-893x.2012.09.025
CAI Jiliang, TONG Chuangming, and JI Weijie. Recent progress of ultra-wideband through-the-wall radar imaging[J]. Telecommunication Engineering, 2012, 52(9): 1541–1546. doi: 10.3969/j.issn.1001-893x.2012.09.025
|
[43] |
SU Yurou and LU Guizhen. An improved inversion model for two-dimensional microwave imaging[C]. 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 2019: 1–3.
|
[44] |
BOGERT B. Demonstration of delay distortion correction by time-reversal techniques[J]. IRE Transactions on Communications Systems, 1957, 5(3): 2–7. doi: 10.1109/TCOM.1957.1097511
|
[45] |
FINK M. Time reversal of ultrasonic fields. I. Basic principles[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39(5): 555–566. doi: 10.1109/58.156174
|
[46] |
王凌, 郑文军. 时间反转技术在超宽带穿墙雷达中的应用[J]. 无线电工程, 2012, 42(5): 42–44. doi: 10.3969/j.issn.1003-3106.2012.05.014
WANG Ling and ZHENG Wenjun. Application of time reversal technique in ultra-wideband through-the-wall radar[J]. Radio Engineering, 2012, 42(5): 42–44. doi: 10.3969/j.issn.1003-3106.2012.05.014
|
[47] |
ODEDO V C, YAVUZ M E, COSTEN F, et al. Time reversal technique based on spatiotemporal windows for through the wall imaging[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3065–3072. doi: 10.1109/TAP.2017.2696421
|
[48] |
DUBROCA R, FORTINO N, DAUVIGNAC J Y, et al. Time reversal-based processing for human targets detection in realistic through-the-wall scenarios[C]. 2011 8th European Radar Conference, Manchester, UK, 2011: 1–4.
|
[49] |
GOLLUB J N, YURDUSEVEN O, TROFATTER K P, et al. Large metasurface aperture for millimeter wave computational imaging at the human-scale[J]. Scientific Reports, 2017, 7: 42650. doi: 10.1038/srep42650
|
[50] |
KHORASHADI-ZADEH V and DEHMOLLAIAN M. Through a cinder block wall refocusing using SAR back projection method[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(2): 1212–1222. doi: 10.1109/TAP.2018.2882599
|
[51] |
杨泽民, 孙光才, 吴玉峰, 等. 一种新的基于极坐标格式的快速后向投影算法[J]. 电子与信息学报, 2014, 36(3): 537–544. doi: 10.3724/SP.J.1146.2013.00613
YANG Zemin, SUN Guangcai, WU Yufeng, et al. A new fast back projection algorithm based on polar format algorithm[J]. Journal of Electronics &Information Technology, 2014, 36(3): 537–544. doi: 10.3724/SP.J.1146.2013.00613
|
[52] |
WANG Hong, NARAYANAN R M, and ZHOU Zheng’ou. Through-wall imaging of moving targets using UWB random noise radar[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 802–805. doi: 10.1109/LAWP.2009.2021586
|
[53] |
AHMAD F, ZHANG Yimin, and AMIN M G. Three-dimensional wideband beamforming for imaging through a single wall[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 176–179. doi: 10.1109/LGRS.2008.915742
|
[54] |
SONG Yongping, HU Jun, CHU Ning, et al. Building layout reconstruction in concealed human target sensing via UWB MIMO through-wall imaging radar[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8): 1199–1203. doi: 10.1109/LGRS.2018.2834501
|
[55] |
KONG Lingjiang, CUI Guolong, YANG Xiaobo, et al. Three-dimensional human imaging for through-the-wall radar[C]. 2009 IEEE Radar Conference, Pasadena, USA, 2009: 1–4.
|
[56] |
ZHAO Dizhi, DAI Yongpeng, SONG Yongping, et al. A three-dimensional enhanced imaging method based on deconvolution[C]. 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 2017: 2076–2079.
|
[57] |
ADIB F, HSU C Y, MAO Hongzhi, et al. Capturing the human figure through a wall[J]. ACM Transactions on Graphics, 2015, 34(6): 219. doi: 10.1145/2816795.2818072
|
[58] |
WANG Mingyang, CUI Guolong, HUANG Huabin, et al. Through-wall human motion representation via autoencoder-self organized mapping network[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019: 1–6.
|
[59] |
AN Qiang, WANG Shuoguang, YAO Lei, et al. RPCA-based high resolution through-the-wall human motion feature extraction and classification[J]. IEEE Sensors Journal, 2021, 21(17): 19058–19068. doi: 10.1109/JSEN.2021.3088122
|
[60] |
LAI C P and NARAYANAN R M. Through-wall imaging and characterization of human activity using ultrawideband (UWB) random noise radar[C]. SPIE 5778, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV, Orlando, USA, 2005: 186–195.
|
[61] |
CHEN V C. Doppler signatures of radar backscattering from objects with micro-motions[J]. IET Signal Processing, 2008, 2(3): 291–300. doi: 10.1049/iet-spr:20070137
|
[62] |
KIM Y and LING Hao. Human. Human activity classification based on micro-Doppler signatures using a support vector machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(5): 1328–1337. doi: 10.1109/TGRS.2009.2012849
|
[63] |
ZENG Zhengxin, AMIN M G, and SHAN Tao. Automatic arm motion recognition based on radar micro-Doppler signature envelopes[J]. IEEE Sensors Journal, 2020, 20(22): 13523–13532. doi: 10.1109/JSEN.2020.3004581
|
[64] |
RAM S S and LING Hao. Analysis of microDopplers from Human gait using reassigned joint time-frequency transform[J]. Electronic Letters, 2007, 43(23): 1309–1311. doi: 10.1049/el:20071515
|
[65] |
DU L, LI J, STOICA P P, et al. Doppler spectrogram analysis of human gait via iterative adaptive approach[J]. Electronics Letters, 2009, 45(3): 186–188. doi: 10.1049/el:20092769
|
[66] |
DING Yipeng, LIU Runjin, LI Zhengmin, et al. Human micro-Doppler frequency estimation using CESP-based Viterbi algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 3506105.
|
[67] |
AMIN M G, AHMAD F, ZHANG Y D, et al. Human gait recognition with cane assistive device using quadratic time–frequency distributions[J]. IET Radar, Sonar & Navigation, 2015, 9(9): 1224–1230. doi: 10.1049/iet-rsn.2015.0119
|
[68] |
OROVIĆ I, STANKOVIĆ S, and AMIN M. A new approach for classification of human gait based on time-frequency feature representations[J]. Signal Processing, 2011, 91(6): 1448–1456. doi: 10.1016/j.sigpro.2010.08.013
|
[69] |
LI Po, WANG Dechun, and WANG Lu. Separation of micro-Doppler signals based on time frequency filter and Viterbi algorithm[J]. Signal, Image and Video Processing, 2013, 7(3): 593–605. doi: 10.1007/s11760-011-0263-3
|
[70] |
JOKANOVIĆ B and AMIN M G. Suitability of data representation domains in expressing human motion radar signals[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2370–2374. doi: 10.1109/LGRS.2017.2765341
|
[71] |
GROOT S R, YAROVOY A G, HARMANNY R I A, et al. Model-based classification of human motion: Particle filtering applied to the micro-Doppler spectrum[C]. 2012 9th European Radar Conference, Amsterdam, Netherlands, 2012: 198–201.
|
[72] |
LE H T, PHUNG S L, and BOUZERDOUM A. Human gait recognition with micro-Doppler radar and deep autoencoder[C]. 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 2018: 3347–3352.
|
[73] |
LIU Liang, POPESCU M, SKUBIC M, et al. Automatic fall detection based on Doppler radar motion signature[C]. The 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, Dublin, Ireland, 2011: 222–225.
|
[74] |
FAIRCHILD D P and NARAYANAN R M. Classification of human motions using empirical mode decomposition of human micro-Doppler signatures[J]. IET Radar, Sonar & Navigation, 2014, 8(5): 425–434. doi: 10.1049/iet-rsn.2013.0165
|
[75] |
蒋留兵, 李骢, 车俐. 利用二维小波包分解实现超宽带雷达人体动作识别[J]. 电子测量与仪器学报, 2018, 32(8): 69–75. doi: 10.13382/j.jemi.2018.08.010
JIANG Liubing, LI Cong, and CHE Li. Human motion recognition using ultra-wide band radar based on two-dimensional wavelet packet decomposition[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(8): 69–75. doi: 10.13382/j.jemi.2018.08.010
|
[76] |
DING Yipeng, LEI Chengxi, XU Xuemei, et al. Human micro-Doppler frequency estimation approach for Doppler radar[J]. IEEE Access, 2018, 6: 6149–6159. doi: 10.1109/ACCESS.2018.2793277
|
[77] |
EROL B, AMIN M G, and BOASHASH B. Range-Doppler radar sensor fusion for fall detection[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 819–824.
|
[78] |
KILIÇ A, BABAOĞLU I, BABALIK A, et al. Through-wall radar classification of human posture using convolutional neural networks[J]. International Journal of Antennas and Propagation, 2019, 2019: 7541814. doi: 10.1155/2019/7541814
|
[79] |
ZHANG Yang, QI Fugui, LV Hao, et al. Bioradar technology: Recent research and advancements[J]. IEEE Microwave Magazine, 2019, 20(8): 58–73. doi: 10.1109/MMM.2019.2915491
|
[80] |
CORTES C and VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. doi: 10.1023/A:1022627411411
|
[81] |
YANG Yinan, ZHANG Wenxue, and LU Chao. Classify human motions using micro-Doppler radar[C]. SPIE 6944, Biometric Technology for Human Identification V, Orlando, USA, 2008: 69440V.
|
[82] |
LI Jingli, PHUNG S L, TIVIVE F H C, et al. Automatic classification of human motions using Doppler radar[C]. The 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 2012: 1–6.
|
[83] |
LI Fangmin, YANG Chao, XIA Yuqing, et al. An Adaptive S-method to analyze micro-Doppler signals for human activity classification[J]. Sensors, 2017, 17(12): 2769. doi: 10.3390/s17122769
|
[84] |
ALVEE B I, TISHA S N, and CHAKRABARTY A. Application of machine learning classifiers for predicting human activity[C]. 2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), Bandung, Indonesia, 2021: 39–44.
|
[85] |
SMITH G E, WOODBRIDGE K, and BAKER C J. Naive Bayesian radar micro-Doppler recognition[C]. 2008 International Conference on Radar, Adelaide, Australia, 2008: 111–116.
|
[86] |
RICCI R and BALLERI A. Recognition of humans based on radar micro-Doppler shape spectrum features[J]. IET Radar, Sonar & Navigation, 2015, 9(9): 1216–1223. doi: 10.1049/iet-rsn.2014.0551
|
[87] |
PADAR M O, ERTAN A E, and CANDAN Ç Ĝ. Classification of human motion using radar micro-Doppler signatures with hidden Markov models[C]. IEEE Radar Conference, Philadelphia, USA, 2016: 1–6.
|
[88] |
LEI Peng, WANG Jun, GUO Peng, et al. Automatic classification of radar targets with micro-motions using entropy segmentation and time-frequency features[J]. AEU - International Journal of Electronics and Communications, 2011, 65(10): 806–813. doi: 10.1016/j.aeue.2011.01.013
|
[89] |
谢非, 徐贵力, 吕东岳, 等. 一种基于决策树的多种人体姿态识别方法[P]. 中国专利, 101533467B, 2013.
XIE Fei, XU Guili, LV Dongyue, et al. Method for identifying a plurality of human postures based on decision tree[P]. China Patent, 101533467B, 2013.
|
[90] |
KIM Y and MOON T. Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(1): 8–12. doi: 10.1109/LGRS.2015.2491329
|
[91] |
KIM Y and TOOMAJIAN B. Hand gesture recognition using micro-Doppler signatures with convolutional neural network[J]. IEEE Access, 2016, 4: 7125–7130. doi: 10.1109/ACCESS.2016.2617282
|
[92] |
PAPANASTASIOU V S, TROMMEL R P, HARMANNY R I A, et al. Deep Learning-based identification of human gait by radar micro-Doppler measurements[C]. 2020 17th European Radar Conference (EuRAD), Utrecht, Netherlands, 2021: 49–52.
|
[93] |
ZHU Jianping, CHEN Haiquan, and YE Wenbin. A hybrid CNN–LSTM network for the classification of human activities based on micro-Doppler radar[J]. IEEE Access, 2020, 8: 24713–24720. doi: 10.1109/ACCESS.2020.2971064
|
[94] |
ZHANG Zhenyuan, TIAN Zengshan, and ZHOU Mu. Latern: Dynamic continuous hand gesture recognition using FMCW radar sensor[J]. IEEE Sensors Journal, 2018, 18(8): 3278–3289. doi: 10.1109/JSEN.2018.2808688
|
[95] |
WANG Saiwen, SONG Jie, LIEN J, et al. Interacting with soli: Exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum[C]. The 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 2016: 851–860.
|