Citation: | ZHU Hui, HUANG Yukun, WANG Fengwei, YANG Xiaopeng, LI Hui. A High Throughput SM2 Digital Signature Computing Scheme Based on Graphics Processing Unit Platform[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4274-4283. doi: 10.11999/JEIT211049 |
[1] |
国家密码管理局. GM/T 0003.2-2012 SM2椭圆曲线公钥密码算法 第2部分: 数字签名算法[S]. 北京: 中国标准出版社, 2012.
State Cryptography Administration of China. GM/T 0003.2-2012 Public key cryptographic algorithm SM2 based on elliptic curves-Part 2: Digital signature algorithm[S]. Beijing: Standards Press of China, 2012.
|
[2] |
International Organization for Standardization. ISO/IEC 14888-3: 2018 IT security techniques - Digital signatures with appendix - Part 3: Discrete logarithm based mechanisms[S]. Geneva: ISO, 2018.
|
[3] |
新浪科技. 阿里首席技术官程立: “双十一”的技术挑战进入新的历史阶段[EB/OL].https://tech.sina.com.cn/roll/2020-11-11/doc-iiznctke0933662.shtml, 2020.
Sina Technology. Cheng Li, CTO of Alibaba: The technical challenges of "the Double Eleventh" have entered a new historical stage[EB/OL]. https://tech.sina.com.cn/roll/2020-11-11/doc-iiznctke0933662.shtml, 2020.
|
[4] |
KOPPERMANN P, DE SANTIS F, HEYSZL J, et al. Low-latency X25519 hardware implementation: Breaking the 100 microseconds barrier[J]. Microprocessors and Microsystems, 2017, 52: 491–497. doi: 10.1016/j.micpro.2017.07.001
|
[5] |
HUANG Junhao, LIU Zhe, HU Zhi, et al. Parallel implementation of SM2 elliptic curve cryptography on Intel processors with AVX2[C]. 25th Australasian Conference on Information Security and Privacy, Perth, Australia, 2020: 204–224.
|
[6] |
OWENS J D, HOUSTON M, LUEBKE D, et al. GPU computing[J]. Proceedings of the IEEE, 2008, 96(5): 879–899. doi: 10.1109/JPROC.2008.917757
|
[7] |
PAN Wuqiong, ZHENG Fangyu, ZHAO Yuan, et al. An efficient elliptic curve cryptography signature server with GPU acceleration[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(1): 111–122. doi: 10.1109/TIFS.2016.2603974
|
[8] |
SOLINAS J A. An improved algorithm for arithmetic on a family of elliptic curves[C]. 17th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 1997: 357–371.
|
[9] |
YAROM Y and BENGER N. Recovering OpenSSL ECDSA nonces using the FLUSH+RELOAD cache side-channel attack[J]. IACR Cryptology ePrint Archive, 2014, 2014: 140.
|
[10] |
VAN DE POL J, SMART N P, and YAROM Y. Just a little bit more[C]. The Cryptographer’s Track at the RSA Conference, San Francisco, USA, 2015: 3–21.
|
[11] |
ZHOU Lu, SU Chunhua, HU Zhi, et al. Lightweight implementations of NIST P-256 and SM2 ECC on 8-bit resource-constraint embedded device[J]. ACM Transactions on Embedded Computing Systems, 2019, 18(3): 23. doi: 10.1145/3236010
|
[12] |
国家密码管理局. GM/T 0004-2012 SM3密码杂凑算法[S]. 北京: 中国标准出版社, 2012.
State Cryptography Administration of China. GM/T 0004-2012 SM3 cryptographic hash algorithm[S]. Beijing: Standards Press of China, 2012.
|
[13] |
国家密码管理局. GM/T 0004-2012 SM2椭圆曲线公钥密码算法 第5部分: 参数定义[S]. 北京: 中国标准出版社, 2012.
State Cryptography Administration of China. GM/T 0003.5-2012 Public key cryptographic algorithm SM2 based on elliptic curves-Part 5: Parameter definition[S]. Beijing: Standards Press of China, 2012.
|
[14] |
ZHAO Zhenwei and BAI Guoqiang. Ultra high-speed SM2 ASIC implementation[C]. The 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications, Beijing, China, 2014: 182–188.
|
[15] |
HU Xianghong, ZHENG Xin, ZHANG Shengshi, et al. A High-performance elliptic curve cryptographic processor of SM2 over GF(p)[J]. Electronics, 2019, 8(4): 431. doi: 10.3390/electronics8040431
|
[16] |
RIVAIN M. Fast and regular algorithms for scalar multiplication over elliptic curves[J/OL]. IACR Cryptology ePrint Archive, 2011, 338.
|
[17] |
Nvidia. Parallel thread execution ISA version 7.3[EB/OL]. https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#ptx-machine-mode, 2022.
|
[18] |
SZERWINSKI R and GÜNEYSU T. Exploiting the power of GPUs for asymmetric cryptography[C]. 10th International Workshop on Cryptographic Hardware and Embedded Systems, Washington, USA, 2008: 79–99.
|
[19] |
KOC C K, ACAR T, and KALISKI B S. Analyzing and comparing Montgomery multiplication algorithms[J]. IEEE Micro, 1996, 16(3): 26–33. doi: 10.1109/40.502403
|
[20] |
HANKERSON D, VANSTONE S, and MENEZES A. Guide to Elliptic Curve Cryptography[M]. New York: Springer, 2004: 110–111.
|
[21] |
DONG Jiankuo, ZHENG Fangyu, CHENG Juanjuan, et al. Towards high-performance X25519/448 key agreement in general purpose GPUs[C]. 2018 IEEE Conference on Communications and Network Security, Beijing, China, 2018: 1–9.
|
[22] |
GAO Lili, ZHENG Fangyu, EMMART N, et al. DPF-ECC: Accelerating elliptic curve cryptography with floating-point computing power of GPUs[C]. 2020 IEEE International Parallel and Distributed Processing Symposium, New Orleans, USA, 2020: 494–504.
|
[23] |
LEE S, SEO H, KWON H, et al. Hybrid approach of parallel implementation on CPU–GPU for high-speed ECDSA verification[J]. The Journal of Supercomputing, 2019, 75(8): 4329–4349. doi: 10.1007/s11227-019-02744-6
|