Citation: | JIN Tian, HE Yuan, LI Xinyu, SONG Yongkun, YANG Yang. Advances in Human Activity Sensing Using Ultra-Wide Band Radar[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1147-1155. doi: 10.11999/JEIT211044 |
[1] |
LI Xinyu, HE Yuan, and JING Xiaojun. A survey of deep learning-based human activity recognition in radar[J]. Remote Sensing, 2019, 11(9): 1068. doi: 10.3390/rs11091068
|
[2] |
CHOI J W, YIM D H, and CHO S H. People counting based on an IR-UWB radar sensor[J]. IEEE Sensors Journal, 2017, 17(17): 5717–5727. doi: 10.1109/JSEN.2017.2723766
|
[3] |
SETLUR P, SMITH G E, AHMAD F, et al. Target localization with a single sensor via multipath exploitation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 1996–2014. doi: 10.1109/TAES.2012.6237575
|
[4] |
ADIB F and KATABI D. See through walls with WiFi![C]. The ACM SIGCOMM Conference on SIGCOMM, Hong Kong, China, 2013: 75–86.
|
[5] |
ADIB F, KABELAC Z, KATABI D, et al. 3D tracking via body radio reflections[C]. The 11th USENIX Conference on Networked Systems Design and Implementation (NSDI’14), Seattle, USA, 2014: 317–329.
|
[6] |
LIU Haiping, YANG Ruixia, YANG Yang, et al. Human–human interaction recognition based on ultra-wideband radar[J]. Signal, Image and Video Processing, 2020, 14(6): 1181–1188. doi: 10.1007/s11760-020-01658-8
|
[7] |
SAKAMOTO T, MATSUKI Y, and SATO T. A novel UWB radar 2-D imaging method with a small number of antennas for simple-shaped targets with arbitrary motion[C]. 2009 IEEE International Conference on Ultra-Wideband, Vancouver, Canada, 2009: 449–453.
|
[8] |
QIAN Jiang, AHMAD F, and AMIN M G. Joint localization of stationary and moving targets behind walls using sparse scene recovery[J]. Journal of Electronic Imaging, 2013, 22(2): 021002. doi: 10.1117/1.JEI.22.2.021002
|
[9] |
ZHUGE X, SAVELYEV T G, YAROVOY A G, et al. Human body imaging by microwave UWB radar[C]. 2008 European Radar Conference, Amsterdam, Holland, 2008: 148–151.
|
[10] |
RAM S S and MAJUMDAR A. High-resolution radar imaging of moving humans using Doppler processing and compressed sensing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1279–1287. doi: 10.1109/TAES.2014.140481
|
[11] |
李廉林, 周小阳, 崔铁军. 结构化信号处理理论和方法的研究进展[J]. 雷达学报, 2015, 4(5): 491–502.
LI Lianlin, ZHOU Xiaoyang, and CUI Tiejun. Perspectives on theories and methods of structural signal processing[J]. Journal of Radars, 2015, 4(5): 491–502.
|
[12] |
崔国龙, 孔令讲, 杨建宇, 等. 穿墙雷达三维合成孔径成像算法研究[C]. 第十届全国雷达学术年会论文集, 北京, 2008: 535–538.
|
[13] |
ZHAO Mingmin, LI Tianhong, ALSHEIKH M A, et al. Through-wall human pose estimation using radio signals[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7356–7365.
|
[14] |
LI Tianhong, FAN Lijie, ZHAO Mingmin, et al. Making the invisible visible: Action recognition through walls and occlusions[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 872–881.
|
[15] |
赵帝植. 超宽带MIMO雷达三维增强成像技术[D]. [硕士论文], 国防科技大学, 2018.
ZHAO Dizhi. Ultra-wideband MIMO radar three-dimensional enhanced imaging method[D]. [Master dissertation], National University of Defense Technology, 2018.
|
[16] |
SONG Yongkun, JIN Tian, DAI Yongpeng, et al. Through-wall human pose reconstruction via UWB MIMO radar and 3D CNN[J]. Remote Sensing, 2021, 13(2): 241. doi: 10.3390/rs13020241
|
[17] |
BOULIC R, THALMANN N M, and THALMANN D. A global human walking model with real-time kinematic personification[J]. The Visual Computer, 1990, 6(6): 344–358. doi: 10.1007/BF01901021
|
[18] |
VAN DORP P and GROEN F C A. Human walking estimation with radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(5): 356–365. doi: 10.1049/ip-rsn:20030568
|
[19] |
RAM S S, CHRISTIANSON C, KIM Y, et al. Simulation and analysis of human micro-Dopplers in through-wall environments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2015–2023. doi: 10.1109/TGRS.2009.2037219
|
[20] |
Carnegie Mellon university motion capture database[EB/OL]. http://mocap.cs.cmu.edu/, 2020.
|
[21] |
EROL B and GURBUZ S Z. A kinect-based human micro-Doppler simulator[J]. IEEE Aerospace and Electronic Systems Magazine, 2015, 30(5): 6–17. doi: 10.1109/MAES.2015.7119820
|
[22] |
SHI Xiaoran, YAO Xin, BAI Xueru, et al. Radar echoes simulation of human movements based on MOCAP data and EM calculation[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6): 859–863. doi: 10.1109/LGRS.2018.2887310
|
[23] |
KIM Y and LING Hao. Human activity classification based on micro-Doppler signatures using a support vector machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(5): 1328–1337. doi: 10.1109/TGRS.2009.2012849
|
[24] |
SUN Zhongsheng, WANG Jun, SUN Jinping, et al. Parameter estimation method of walking human based on radar micro-Doppler[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 567–570.
|
[25] |
崔文. 多站低频雷达运动人体微多普勒特征提取与跟踪技术[D]. [博士论文], 国防科技大学, 2017.
CUI Wen. Technique of human micro-Doppler feature extraction and tracking with multi -station low frequency radar[D]. [Ph. D. dissertation], National University of Defense Technology, 2017.
|
[26] |
LEI Jiajin and LU Chao. Target classification based on micro-Doppler signatures[C]. The IEEE International Radar Conference, Arlington, USA, 2005: 179–183.
|
[27] |
FIORANELLI F, RITCHIE M, GÜRBÜZ S Z, et al. Feature diversity for optimized human micro-Doppler classification using multistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 640–654. doi: 10.1109/TAES.2017.2651678
|
[28] |
PADAR M O, ERTAN A E, and CANDAN Ç Ĝ. Classification of human motion using radar micro-Doppler signatures with hidden markov models[C]. 2016 IEEE Radar Conference (RadarConf), Philadelphia, USA, 2016: 1–6.
|
[29] |
LANG Yue, WANG Qing, YANG Yang, et al. Unsupervised domain adaptation for micro-Doppler human motion classification via feature fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(3): 392–396. doi: 10.1109/LGRS.2018.2873776
|
[30] |
KIM Y and MOON T. Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(1): 8–12. doi: 10.1109/LGRS.2015.2491329
|
[31] |
JOKANOVIĆ B and AMIN M. Fall detection using deep learning in range-Doppler radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 180–189. doi: 10.1109/TAES.2017.2740098
|
[32] |
SEYFIOĞLU M S and GÜRBÜZ S Z. Deep neural network initialization methods for micro-Doppler classification with low training sample support[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2462–2466. doi: 10.1109/LGRS.2017.2771405
|
[33] |
CRALEY J, MURRAY T S, MENDAT D R, et al. Action recognition using micro-Doppler signatures and a recurrent neural network[C]. The 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, USA, 2017: 1–5.
|
[34] |
MURRAY T S, MENDAT D R, SANNI K A, et al. Bio-inspired human action recognition with a micro-Doppler sonar system[J]. IEEE Access, 2017, 6: 28388–28403.
|
[35] |
WANG Mingyang, ZHANG Y D, and CUI Guolong. Human motion recognition exploiting radar with stacked recurrent neural network[J]. Digital Signal Processing, 2019, 87: 125–131. doi: 10.1016/j.dsp.2019.01.013
|
[36] |
WANG Saiwen, SONG Jie, LIEN J, et al. Interacting with soli: Exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum[C]. The 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 2016: 851–860.
|
[37] |
DU Hao, JIN Tian, SONG Yongping, et al. A three-dimensional deep learning framework for human behavior analysis using range-Doppler time points[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4): 611–615. doi: 10.1109/LGRS.2019.2930636
|
[38] |
SEYFIOGLU M S, EROL B, GURBUZ S Z, et al. DNN transfer learning from diversified micro-Doppler for motion classification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(5): 2164–2180. doi: 10.1109/TAES.2018.2883847
|
[39] |
LI Xinyu, HE Yuan, FIORANELLI F, et al. Human motion recognition with limited radar micro-Doppler signatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6586–6599. doi: 10.1109/TGRS.2020.3028223
|
[40] |
LI Xinyu, HE Yuan, FIORANELLI F, et al. Semisupervised human activity recognition with radar micro-Doppler signatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–12.
|
[41] |
DU Hao, JIN Tian, SONG Yongping, et al. Unsupervised adversarial domain adaptation for micro-Doppler based human activity classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(1): 62–66. doi: 10.1109/LGRS.2019.2917301
|
[42] |
LANG Yue, HOU Chunping, JI Haoran, et al. A dual generation adversarial network for human motion detection using micro-Doppler signatures[J]. IEEE Sensors Journal, 2021, 21(16): 17995–18003. doi: 10.1109/JSEN.2021.3084241
|
[43] |
FIORANELLI F, SHA S A, LI Haobo, et al. Radar sensing for healthcare[J]. Electronics Letters, 2019, 55(19): 1022–1024. doi: 10.1049/el.2019.2378
|