Advanced Search
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
WANG Hui, OUYANG Shan, LIU Qinghua, LIAO Kefei, ZHOU Lijun. Structure Feature Detection Method for Ground Penetrating Radar Two-Dimensional Profile Image Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1284-1294. doi: 10.11999/JEIT211032
Citation: WANG Hui, OUYANG Shan, LIU Qinghua, LIAO Kefei, ZHOU Lijun. Structure Feature Detection Method for Ground Penetrating Radar Two-Dimensional Profile Image Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1284-1294. doi: 10.11999/JEIT211032

Structure Feature Detection Method for Ground Penetrating Radar Two-Dimensional Profile Image Based on Deep Learning

doi: 10.11999/JEIT211032
Funds:  The National Natural Science Foundation of China (61871425, 61861011, 61631019), Guangxi Special Fund Project for Innovation-driven Development (GuikeAA21077008), Shanxi Transportation Department Projects (2019-1-18)
  • Received Date: 2021-09-27
  • Accepted Date: 2022-02-23
  • Rev Recd Date: 2022-02-18
  • Available Online: 2022-03-07
  • Publish Date: 2022-04-18
  • To solve the problem of the difficulty of target feature extraction and low recognition accuracy in Ground Penetrating Radar (GPR) two-dimensional profile, a deep learning method is used to extract the characteristic hyperbola of targets in B-SCAN image. Physics-based of GPR, a cascade Convolutional Neural Network (CNN) is designed to detect and remove the direct wave interference signal in the echo data. Then, the B-SCAN image is obtained by CNN, and the characteristic signals are classified and recognized to extract the characteristic hyperbola of the target. Meanwhile, in order to deal with the problem that the interference signals affect the structural integrity of the feature hyperbola, a feature data completion method based on directional guidance is proposed to improve the accuracy of the feature hyperbola recognition results. Compared with Histogram of Oriented Gradients(HOG) algorithm, You Only Look Once V3(YOLOV3) algorithm and Faster Region-based Convolutional Neural Network(Faster RCNN) algorithm, the detection result of the proposed method is the best in the comprehensive evaluation index F.
  • loading
  • [1]
    PAMBUDI A D, FAUß M, AHMAD F, et al. Minimax robust landmine detection using forward-looking ground-penetrating radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 5032–5041. doi: 10.1109/TGRS.2020.2971956
    [2]
    EBRAHIM S M, MEDHAT N I, MANSOUR K K, et al. Examination of soil effect upon GPR detectability of landmine with different orientations[J]. NRIAG Journal of Astronomy and Geophysics, 2018, 7(1): 90–98. doi: 10.1016/j.nrjag.2017.12.004
    [3]
    郝彤, 赵杰. 面向双曲线形态的探地雷达图像识别技术综述[J]. 电子学报, 2019, 47(6): 1366–1372. doi: 10.3969/j.issn.0372-2112.2019.06.025

    HAO Tong and ZHAO Jie. A brief review of the hyperbola signature recognition techniques for ground penetrating radar[J]. Acta Electronica Sinica, 2019, 47(6): 1366–1372. doi: 10.3969/j.issn.0372-2112.2019.06.025
    [4]
    侯斐斐, 施荣华, 雷文太, 等. 面向探地雷达B-scan图像的目标检测算法综述[J]. 电子与信息学报, 2020, 42(1): 191–200. doi: 10.11999/JEIT190680

    HOU Feifei, SHI Ronghua, LEI Wentai, et al. A review of target detection algorithm for GPR B-scan processing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 191–200. doi: 10.11999/JEIT190680
    [5]
    LUO T X H, LAI W W L, CHANG R K W, et al. GPR imaging criteria[J]. Journal of Applied Geophysics, 2019, 165: 37–48. doi: 10.1016/j.jappgeo.2019.04.008
    [6]
    YANG Tianchun, DAI Shixin, DENG Hanyang, et al. Application research of GPR in quality detection of urban underground jacked pipes construction[J]. IOP Conference Series:Earth and Environmental Science, 2019, 295(4): 042069. doi: 10.1088/1755-1315/295/4/042069
    [7]
    FIROOZABADI R, MILLER E L, RAPPAPORT C M, et al. Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(1): 104–117. doi: 10.1109/TGRS.2006.883462
    [8]
    MINET J, LAMBOT S, SLOB E C, et al. Soil surface water content estimation by full-waveform GPR signal inversion in the presence of thin layers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1138–1150. doi: 10.1109/TGRS.2009.2031907
    [9]
    CAPINERI L, GRANDE P, and TEMPLE J A G. Advanced image-processing technique for real-time interpretation of ground-penetrating radar images[J]. International Journal of Imaging Systems and Technology, 1998, 9(1): 51–59. doi: 10.1002/(SICI)1098-1098(1998)9:1<51::AID-IMA7>3.0.CO;2-Q
    [10]
    MAAS C and SCHMALZL J. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar[J]. Computers & Geosciences, 2013, 58: 116–125. doi: 10.1016/j.cageo.2013.04.012
    [11]
    TORRIONE P A, MORTON K D, SAKAGUCHI R, et al. Histograms of oriented gradients for landmine detection in ground-penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1539–1550. doi: 10.1109/TGRS.2013.2252016
    [12]
    FRIGUI H and GADER P. Detection and discrimination of land mines in ground-penetrating radar based on edge histogram descriptors and a possibilistic k-nearest neighbor classifier[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(1): 185–199. doi: 10.1109/TFUZZ.2008.2005249
    [13]
    PHAM M T and LEFÈVRE S. Buried object detection from B-scan ground penetrating radar data using Faster-RCNN[C]. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 6804–6807.
    [14]
    LEI Wentai, HOU Feifei, XI Jingchun, et al. Automatic hyperbola detection and fitting in GPR B-scan image[J]. Automation in Construction, 2019, 106: 102839. doi: 10.1016/j.autcon.2019.102839
    [15]
    王辉, 欧阳缮, 廖可非, 等. 基于深度学习的GPR B-SCAN图像双曲线检测方法[J]. 电子学报, 2021, 49(5): 953–963. doi: 10.12263/DZXB.20200635

    WANG Hui, OUYANG Shan, LIAO Kefei, et al. GPR B-SCAN image hyperbola detection method based on deep learning[J]. Acta Electronica Sinica, 2021, 49(5): 953–963. doi: 10.12263/DZXB.20200635
    [16]
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [17]
    杨必胜, 宗泽亮, 陈驰, 等. 车载探地雷达地下目标实时探测法[J]. 测绘学报, 2020, 49(7): 874–882. doi: 10.11947/j.AGCS.2020.20190293

    YANG Bisheng, ZONG Zeliang, CHEN Chi, et al. Real time approach for underground objects detection from vehicle-borne ground penetrating radar[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 874–882. doi: 10.11947/j.AGCS.2020.20190293
    [18]
    REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL].https://arxiv.org/abs/1804.02767, 2018.
    [19]
    ZHANG Jun, YANG Xing, LI Weiguang, et al. Automatic detection of moisture damages in asphalt pavements from GPR data with deep CNN and IRS method[J]. Automation in Construction, 2020, 113: 103119. doi: 10.1016/j.autcon.2020.103119
    [20]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778.
    [21]
    REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525.
    [22]
    BRUNZELL H. Detection of shallowly buried objects using impulse radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 875–886. doi: 10.1109/36.752207
    [23]
    WARREN C, GIANNOPOULOS A, and GIANNAKIS I. gprMax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar[J]. Computer Physics Communications, 2016, 209: 163–170. doi: 10.1016/j.cpc.2016.08.020
    [24]
    DÉROBERT X and PAJEWSKI L. TU1208 open database of radargrams: The dataset of the IFSTTAR geophysical test site[J]. Remote Sensing, 2018, 10(4): 530. doi: 10.3390/rs10040530
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (907) PDF downloads(172) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return