Citation: | LIU Xiangyu, LIU Baorui, SONG Song, GUO Lei. Research on Optimization of Camera-based Visible Light Positioning System[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4246-4255. doi: 10.11999/JEIT211019 |
[1] |
WU Xiping, SOLTANI M D, ZHOU Lai, et al. Hybrid LiFi and WiFi networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 1398–1420. doi: 10.1109/COMST.2021.3058296
|
[2] |
LIU Fen, LIU Jing, YIN Yuqing, et al. Survey on WiFi-based indoor positioning techniques[J]. IET Communications, 2020, 14(9): 1372–1383. doi: 10.1049/iet-com.2019.1059
|
[3] |
BERNARDINI F, BUFFI A, FONTANELLI D, et al. Robot-based indoor positioning of UHF-RFID tags: The SAR method with multiple trajectories[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 8001415. doi: 10.1109/TIM.2020.3033728
|
[4] |
SPACHOS P and PLATANIOTIS K N. BLE beacons for indoor positioning at an interactive IoT-based smart museum[J]. IEEE Systems Journal, 2020, 14(3): 3483–3493. doi: 10.1109/JSYST.2020.2969088
|
[5] |
YAO C Y and HSIA W C. An indoor positioning system based on the dual-channel passive RFID technology[J]. IEEE Sensors Journal, 2018, 18(11): 4654–4663. doi: 10.1109/JSEN.2018.2828044
|
[6] |
FENG Daquan, WANG Chunqi, HE Chunlong, et al. Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation[J]. IEEE Internet of Things Journal, 2020, 7(4): 3133–3146. doi: 10.1109/JIOT.2020.2965115
|
[7] |
ZHOU Mu, LI Xinyue, WANG Ya, et al. 6G multisource-information-fusion-based indoor positioning via Gaussian kernel density estimation[J]. IEEE Internet of Things Journal, 2021, 8(20): 15117–15125. doi: 10.1109/JIOT.2020.3031639
|
[8] |
KOMINE T and NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE transactions on Consumer Electronics, 2004, 50(1): 100–107. doi: 10.1109/TCE.2004.1277847
|
[9] |
LUO Junhai, FAN Liying, and LI Husheng. Indoor positioning systems based on visible light communication: State of the art[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2871–2893. doi: 10.1109/COMST.2017.2743228
|
[10] |
GU Wenjun, AMINIKASHANI M, DENG Peng, et al. Impact of multipath reflections on the performance of indoor visible light positioning systems[J]. Journal of Lightwave Technology, 2016, 34(10): 2578–2587. doi: 10.1109/JLT.2016.2541659
|
[11] |
KUO Yesheng, PANNUTO P, HSIAO K J, et al. Luxapose: Indoor positioning with mobile phones and visible light[C]. Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, USA, 2014: 447–458.
|
[12] |
LIU Xiangyu, WEI Xuetao, and GUO Lei. DIMLOC: Enabling high-precision visible light localization under dimmable LEDs in smart buildings[J]. IEEE Internet of Things Journal, 2019, 6(2): 3912–3924. doi: 10.1109/JIOT.2019.2893251
|
[13] |
WANG Zeyu, YANG Zhice, HUANG Qianyi, et al. ALS-P: Light weight visible light positioning via ambient light sensor[C]. Proceedings of 2019 IEEE Conference on Computer Communications, Paris, France, 2019: 1306–1314.
|
[14] |
ZHANG Chi and ZHANG Xinyu. Pulsar: Towards ubiquitous visible light localization[C]. Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, Snowbird, USA, 2017: 208–221.
|
[15] |
ZHANG Chi, TABOR J, ZHANG Jialiang, et al. Extending mobile interaction through near-field visible light sensing[C]. The 21st Annual International Conference on Mobile Computing and Networking, Paris, France, 2015: 345–357.
|