Advanced Search
Volume 44 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
ZHOU Yan, GU Xintao, LI Qingwu. Underwater Image Restoration Based on Background Light Corrected Image Formation Model[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3363-3371. doi: 10.11999/JEIT211012
Citation: ZHOU Yan, GU Xintao, LI Qingwu. Underwater Image Restoration Based on Background Light Corrected Image Formation Model[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3363-3371. doi: 10.11999/JEIT211012

Underwater Image Restoration Based on Background Light Corrected Image Formation Model

doi: 10.11999/JEIT211012
Funds:  The National Key R&D Program of China (2018YFC0406903), The National Natural Science Foundation of China (41706103), The Natural Science Foundation of Jiangsu Province (BK20170306)
  • Received Date: 2021-09-23
  • Accepted Date: 2022-03-22
  • Rev Recd Date: 2022-03-11
  • Available Online: 2022-03-24
  • Publish Date: 2022-10-19
  • The underwater image quality is seriously degraded due to the effects of absorption and scattering when light propagates underwater. In order to remove color distortion and blur, and improve the quality of underwater image effectively, an underwater image restoration method based on background light corrected image formation model is proposed in this paper. Based on the observation of ground hazy images, the assumption of background light offset for underwater images is put forward, which is the cornerstone of the background light corrected image formation model. Then, a monocular depth estimation network is used to obtain the estimate of the scene depth. Combined with the background light corrected image formation model, the underwater offset component is obtained by non-linear least square fitting, so as to remove water from underwater images. Finally, the transmittance of hazy image after water removed is optimized and combined with the corrected background light to achieve image recovery. Experimental results show that the method works well in restoring the original color of underwater scenes and removing scattered light.
  • loading
  • [1]
    LI Changli, TANG Shiqing, KWAN H K, et al. Color correction based on CFA and enhancement based on Retinex with dense pixels for underwater images[J]. IEEE Access, 2020, 8: 155732–155741. doi: 10.1109/ACCESS.2020.3019354
    [2]
    郭银景, 吴琪, 苑娇娇, 等. 水下光学图像处理研究进展[J]. 电子与信息学报, 2021, 43(2): 426–435. doi: 10.11999/JEIT190803

    GUO Yinjing, WU Qi, YUAN Jiaojiao, et al. Research progress on underwater optical image processing[J]. Journal of Electronics &Information Technology, 2021, 43(2): 426–435. doi: 10.11999/JEIT190803
    [3]
    LIMARE N, LISANI J L, MOREL J M, et al. Simplest color balance[J]. Image Processing on Line, 2011, 1: 297–315. doi: 10.5201/ipol.2011.llmps-scb
    [4]
    JOBSON D J, RAHMAN Z, and WOODELL G A. A multiscale Retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965–976. doi: 10.1109/83.597272
    [5]
    GIBSON J. Improving sea-thru with monocular depth estimation methods[EB/OL]. https://github.com/hainh/sea-thru/blob/master/report.tex, 2020.
    [6]
    HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168
    [7]
    BERMAN D, LEVY D, AVIDAN S, et al. Underwater single image color restoration using haze-lines and a new quantitative dataset[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(8): 2822–2837. doi: 10.1109/TPAMI.2020.2977624
    [8]
    AKKAYNAK D and TREIBITZ T. Sea-thru: A method for removing water from underwater images[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Angeles, USA, 2019: 1682–1691.
    [9]
    PENG Y T, ZHAO Xiangyun, and COSMAN P C. Single underwater image enhancement using depth estimation based on blurriness[C]. 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, Canada, 2015: 4952–4956.
    [10]
    AKKAYNAK D and TREIBITZ T. A revised underwater image formation model[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6723–6732.
    [11]
    GODARD C, AODHA O M, FIRMAN M, et al. Digging into self-supervised monocular depth estimation[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 3827–3837.
    [12]
    ZHAO Chaoqiang, SUN Qiyu, ZHANG Chongzhen, et al. Monocular depth estimation based on deep learning: An overview[J]. Science China Technological Sciences, 2020, 63(9): 1612–1627. doi: 10.1007/s11431-020-1582-8
    [13]
    蔡晨东, 霍冠英, 周妍, 等. 基于场景深度估计和白平衡的水下图像复原[J]. 激光与光电子学进展, 2019, 56(3): 031008.

    CAI Chendong, HUO Guanying, ZHOU Yan, et al. Underwater image restoration method based on scene depth estimation and white balance[J]. Laser &Optoelectronics Progress, 2019, 56(3): 031008.
    [14]
    BERMAN D, TREIBITZ T, and AVIDAN S. Single image dehazing using haze-lines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 720–734. doi: 10.1109/TPAMI.2018.2882478
    [15]
    BERMAN D, TREIBITZ T, and AVIDAN S. Non-local image dehazing[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1674–1682.
    [16]
    ANCUTI C O, ANCUTI C, DE VLEESCHOUWER C, et al. Color channel transfer for image dehazing[J]. IEEE Signal Processing Letters, 2019, 26(9): 1413–1417. doi: 10.1109/LSP.2019.2932189
    [17]
    ANCUTI C O, ANCUTI C, DE VLEESCHOUWER C, et al. Color balance and fusion for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2018, 27(1): 379–393. doi: 10.1109/TIP.2017.2759252
    [18]
    LI Chongyi, GUO Jichang, CONG Runmin, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5664–5677. doi: 10.1109/TIP.2016.2612882
    [19]
    王丹, 张子玉, 赵金宝, 等. 基于场景深度估计的自然光照水下图像增强方法[J]. 机器人, 2021, 43(3): 364–372. doi: 10.13973/j.cnki.robot.200275

    WANG Dan, ZHANG Ziyu, ZHAO Jinbao, et al. An enhancement method for underwater images under natural illumination based on scene depth estimation[J]. Robot, 2021, 43(3): 364–372. doi: 10.13973/j.cnki.robot.200275
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (1091) PDF downloads(237) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return