Advanced Search
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LIU Chang, JIA Kebin, LIU Pengyu. Fast Partition Algorithm in Depth Map Intra-frame Coding Unit Based on Multi-branch Network[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4357-4366. doi: 10.11999/JEIT211010
Citation: LIU Chang, JIA Kebin, LIU Pengyu. Fast Partition Algorithm in Depth Map Intra-frame Coding Unit Based on Multi-branch Network[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4357-4366. doi: 10.11999/JEIT211010

Fast Partition Algorithm in Depth Map Intra-frame Coding Unit Based on Multi-branch Network

doi: 10.11999/JEIT211010
Funds:  The National Key Research and Development Project of China (2018YFF01010100), Beijing Natural Science Foundation (4212001), The Basic Research Program of Qinghai Province (2020-ZJ-709, 2021-ZJ-704)
  • Received Date: 2021-09-23
  • Accepted Date: 2021-12-06
  • Rev Recd Date: 2021-12-01
  • Available Online: 2021-12-11
  • Publish Date: 2022-12-16
  • Three Dimensional-High Efficiency Video Coding (3D-HEVC) standard is the latest Three-Dimensional (3D) video coding standard, but the coding complexity increases greatly due to the introduction of depth map coding technology. Among them, the quad-tree partition of depth map intra-frame Coding Unit (CU) accounts for more than 90% of the coding complexity in 3D-HEVC. Therefore, for the intra-frame coding of depth map in 3D-HEVC, considering the high complexity of CU quad-tree partition, a fast prediction scheme of CU partition structure based on deep learning is proposed. Firstly, the dataset of CU partition structure information for learning depth map is constructed. Secondly, a Multi-Branch Convolutional Neural Network (MB-CNN) model for predicting the CU partition structure is built. Then, the MB-CNN model is trained by using the built dataset. Finally, the MB-CNN model is embedded into the 3D-HEVC test platform, which reduces greatly the complexity of CU partition by predicting the partition structure of CU in depth map intra-frame coding. Experimental results show that the proposed algorithm reduces effectively the coding complexity of 3D-HEVC without significant synthesized view quality distortion. Specifically, compared to the standard method, the coding complexity on the standard test sequence is reduced by 37.4%.
  • loading
  • [1]
    LIU Shan, LIU Lu, YANG Hua, et al. Research on 5G technology based on Internet of things[C]. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 2020: 1821–1823.
    [2]
    KUFA J and KRATOCHVIL T. Visual quality assessment considering ultra HD, Full HD resolution and viewing distance[C]. The 29th International Conference Radioelektronika, Pardubice, Czech Republic, 2019: 1–4.
    [3]
    LI Tiansong, YU Li, WANG Hongkui, et al. A bit allocation method based on inter-view dependency and spatio-temporal correlation for multi-view texture video coding[J]. IEEE Transactions on Broadcasting, 2021, 67(1): 159–173. doi: 10.1109/TBC.2020.3028340
    [4]
    王莉, 曹一凡, 杜高明, 等. 一种低延迟的3维高效视频编码中深度建模模式编码器[J]. 电子与信息学报, 2019, 41(7): 1625–1632. doi: 10.11999/JEIT180798

    WANG Li, CAO Yifan, DU Gaoming, et al. A low-latency depth modelling mode-1 encoder in 3D-high efficiency video coding standard[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1625–1632. doi: 10.11999/JEIT180798
    [5]
    CHEN Ying, HANNUKSELA M M, SUZUKI T, et al. Overview of the MVC + D 3D video coding standard[J]. Journal of Visual Communication and Image Representation, 2014, 25(4): 679–688. doi: 10.1016/j.jvcir.2013.03.013
    [6]
    TIAN Shishun, ZHANG Lu, ZOU Wenbin, et al. Quality assessment of DIBR-synthesized views: An overview[J]. Neurocomputing, 2021, 423: 158–178. doi: 10.1016/j.neucom.2020.09.062
    [7]
    齐美彬, 陈秀丽, 杨艳芳, 等. 高效率视频编码帧内预测编码单元划分快速算法[J]. 电子与信息学报, 2014, 36(7): 1699–1705. doi: 10.3724/SP.J.1146.2013.01148

    QI Meibin, CHEN Xiuli, YANG Yanfang, et al. Fast coding unit splitting algorithm for high efficiency video coding intra prediction[J]. Journal of Electronics &Information Technology, 2014, 36(7): 1699–1705. doi: 10.3724/SP.J.1146.2013.01148
    [8]
    ZUO Jiabao, CHEN Jing, ZENG Huanqiang, et al. Bi-layer texture discriminant fast depth intra coding for 3D-HEVC[J]. IEEE Access, 2019, 7: 34265–34274. doi: 10.1109/ACCESS.2019.2897161
    [9]
    LI Tiansong, WANG Hongkui, CHEN Yamei, et al. Fast depth intra coding based on spatial correlation and rate distortion cost in 3D-HEVC[J]. Signal Processing:Image Communication, 2020, 80: 115668. doi: 10.1016/j.image.2019.115668
    [10]
    LI Tiansong, YU Li, WANG Shengwei, et al. Simplified depth intra coding based on texture feature and spatial correlation in 3D-HEVC[C]. 2018 Data Compression Conference, Snowbird, USA, 2018: 421.
    [11]
    SALDANHA M, SANCHEZ G, MARCON C, et al. Fast 3D-HEVC depth map encoding using machine learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(3): 850–861. doi: 10.1109/TCSVT.2019.2898122
    [12]
    FU Changhong, CHEN Hao, CHAN Y L, et al. Fast depth intra coding based on decision tree in 3D-HEVC[J]. IEEE Access, 2019, 7: 173138–173147. doi: 10.1109/ACCESS.2019.2956994
    [13]
    SALDANHA M, SANCHEZ G, MARCON C, et al. Fast 3D-HEVC depth maps intra-frame prediction using data mining[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 1738–1742.
    [14]
    XU Mai, LI Tianyi, WANG Zulin, et al. Reducing complexity of HEVC: A deep learning approach[J]. IEEE Transactions on Image Processing, 2018, 27(10): 5044–5059. doi: 10.1109/TIP.2018.2847035
    [15]
    TANG Genwei, JING Minge, ZENG Xiaoyang, et al. Adaptive CU split decision with pooling-variable CNN for VVC intra encoding[C]. 2019 IEEE Visual Communications and Image Processing (VCIP), Sydney, Australia, 2019: 1–4.
    [16]
    李雅婷, 杨静. 3D-HEVC深度图帧内预测快速编码算法[J]. 光电子·激光, 2020, 31(2): 222–228. doi: 10.16136/j.joel.2020.02.0344

    LI Yating and YANG Jing. Fast intra coding algorithm for depth map in 3D-HEVC[J]. Journal of Optoelectronics Laser, 2020, 31(2): 222–228. doi: 10.16136/j.joel.2020.02.0344
    [17]
    XIE Saining and TU Zhuowen. Holistically-nested edge detection[J]. International Journal of Computer Vision, 2017, 125(1/3): 3–18. doi: 10.1007/s11263-017-1004-z
    [18]
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, USA, 2015: 1–14.
    [19]
    Tanimoto Lab. Nagoya University multi-view sequences download list[EB/OL].https://www.fujii.nuee.nagoya-u.ac.jp/multiview-data/, 2017.
    [20]
    FENG Zeqi, LIU Pengyu, JIA Kebin, et al. Fast intra CTU depth decision for HEVC[J]. IEEE Access, 2018, 6: 45262–45269. doi: 10.1109/ACCESS.2018.2864881
    [21]
    [22]
    BJONTEGAARD G. Calculation of average PSNR differences between RD curves[C]. The 13th Video Coding Experts Group Meeting, Austin, USA, 2001: VCEG-M33.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(8)

    Article Metrics

    Article views (660) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return