Advanced Search
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
ZHANG Junbiao, XIONG Jiajun, LAN Xuhui, CHEN Xin, LI Fan. Research on Maneuvering State Recognition Method of Hypersonic Glide Vehicle[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4134-4143. doi: 10.11999/JEIT211009
Citation: ZHANG Junbiao, XIONG Jiajun, LAN Xuhui, CHEN Xin, LI Fan. Research on Maneuvering State Recognition Method of Hypersonic Glide Vehicle[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4134-4143. doi: 10.11999/JEIT211009

Research on Maneuvering State Recognition Method of Hypersonic Glide Vehicle

doi: 10.11999/JEIT211009
Funds:  The Military Postgraduate Funding Project of China (JY2019B138, JY2018A039)
  • Received Date: 2021-09-22
  • Rev Recd Date: 2022-03-17
  • Available Online: 2022-04-21
  • Publish Date: 2022-12-10
  • The rapid development of Hypersonic Glide Vehicle (HGV) has changed the traditional combat style and opened a new field of military struggle. Identifying the maneuvering state of HGV can provide a powerful support for threat assessment, trajectory prediction and defense decision. In order to improve the accuracy of HGV maneuver state recognition, an HGV maneuver state recognition model based on ATtention Convolutional Long Short-Term Memory network (AT-ConvLSTM) is proposed. First, on the basis of maneuvering modeling and characteristic analysis of HGV, the maneuvering state of HGV in space is divided into eight categories, and the corresponding feature recognition parameters are constructed. A trajectory library containing HGV maneuvering trajectories under different initial conditions and control modes is established. Then, the conversion steps from radar tracking information to feature recognition parameters are deduced. The proposed state recognition model is used to extract the spatial features of HGV motion trajectory, and the maneuvering state is classified by the SoftMax classifier. Finally, the algorithm is verified by simulation experiments. The results show that the proposed method can effectively identify HGV maneuvering state online, which has good real-time and accuracy.
  • loading
  • [1]
    王国宏, 李岳峰, 于洪波, 等. 三维空间中高超声速目标修正三级Hough变换-检测前跟踪算法[J]. 电子与信息学报, 2018, 40(4): 890–897. doi: 10.11999/JEIT170622

    WANG Guohong, LI Yuefeng, YU Hongbo, et al. Modified triple-stage Hough transform track-before-detect algorithm in three-dimensional space for hypersonic target[J]. Journal of Electronics &Information Technology, 2018, 40(4): 890–897. doi: 10.11999/JEIT170622
    [2]
    肖松, 谭贤四, 王红, 等. 地基雷达部署对探测临近空间高超声速目标影响研究[J]. 电子与信息学报, 2015, 37(7): 1723–1728. doi: 10.11999/JEIT141024

    XIAO Song, TAN Xiansi, WANG Hong, et al. Detection performance assessment of near-space hypersonic target based on ground-based radar[J]. Journal of Electronics &Information Technology, 2015, 37(7): 1723–1728. doi: 10.11999/JEIT141024
    [3]
    WANG Yongjun, DONG Jiang, LIU Xiaodong, et al. Identification and standardization of maneuvers based upon operational flight data[J]. Chinese Journal of Aeronautics, 2015, 28(1): 133–140. doi: 10.1016/j.cja.2014.12.026
    [4]
    MA Yanjun, ZHAO Shunyi, and HUANG Biao. Multiple-model state estimation based on Variational Bayesian inference[J]. IEEE Transactions on Automatic Control, 2019, 64(4): 1679–1685. doi: 10.1109/TAC.2018.2854897
    [5]
    孟光磊, 张慧敏, 朴海音, 等. 自动化飞行训练评估中的战机机动动作识别[J]. 北京航空航天大学学报, 2020, 46(7): 1267–1274. doi: 10.13700/j.bh.1001-5965.2019.0445

    MENG Guanglei, ZHANG Huimin, PIAO Haiyin, et al. Recognition of fighter maneuver in automatic flight training evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1267–1274. doi: 10.13700/j.bh.1001-5965.2019.0445
    [6]
    徐西蒙, 杨任农, 于洋, 等. 基于运动分解和H-SVM的空战目标机动识别[J]. 控制与决策, 2020, 35(5): 1265–1272. doi: 10.13195/j.kzyjc.2018.1210

    XU Ximeng, YANG Rennong, YU Yang, et al. Target maneuver recognition in air combat based on motion decomposition and H-SVM[J]. Control and Decision, 2020, 35(5): 1265–1272. doi: 10.13195/j.kzyjc.2018.1210
    [7]
    熊邦书, 刘雨, 莫燕, 等. 基于SVM的直升机飞行状态识别[J]. 应用科学学报, 2016, 34(4): 469–474. doi: 10.3969/j.issn.0255-8297.2016.04.012

    XIONG Bangshu, LIU Yu, MO Yan, et al. Recognition of helicopter flight condition based on support vector machine[J]. Journal of Applied Sciences, 2016, 34(4): 469–474. doi: 10.3969/j.issn.0255-8297.2016.04.012
    [8]
    张裕禄, 毕红葵, 叶泽浩, 等. 基于随机森林的HRGV滑翔段飞行状态识别[J]. 战术导弹技术, 2020(2): 1–8,21. doi: 10.16358/j.issn.1009-1300.2020.9.142

    ZHANG Yulu, BI Hongkui, YE Zehao, et al. Flight state recognition of HRGV glide section based on random forest[J]. Tactical Missile Technology, 2020(2): 1–8,21. doi: 10.16358/j.issn.1009-1300.2020.9.142
    [9]
    周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018, 39(11): 322468–322476. doi: 10.7527/S1000-6893.2018.22468

    ZHOU Wangwang, YAO Peiyang, ZHANG Jieyong, et al. Combat intention recognition for aerial targets based on deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 322468–322476. doi: 10.7527/S1000-6893.2018.22468
    [10]
    季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6): 34–42. doi: 10.19721/j.cnki.1001-7372.2019.06.003

    JI Xuewu, FEI Cong, HE Xiangkun, et al. Intention recognition and trajectory prediction for vehicles using LSTM network[J]. China Journal of Highway and Transport, 2019, 32(6): 34–42. doi: 10.19721/j.cnki.1001-7372.2019.06.003
    [11]
    贾镇泽, 樊晓光, 薛明浩, 等. 基于机动动作元的敌机战术机动在线识别方法[J]. 北京理工大学学报, 2018, 38(8): 820–827. doi: 10.15918/j.tbit1001-0645.2018.08.009

    JIA Zhenze, FAN Xiaoguang, XUE Minghao, et al. Online identification method for tactical maneuver of target based on air combat maneuver element[J]. Transactions of Beijing Institute of Technology, 2018, 38(8): 820–827. doi: 10.15918/j.tbit1001-0645.2018.08.009
    [12]
    ZHENG Tianyu, YAO Yu, HE Fenghua, et al. Active switching multiple model method for tracking a noncooperative gliding flight vehicle[J]. Science China Information Sciences, 2020, 63(9): 192202. doi: 10.1007/s11432-019-1515-2
    [13]
    FAUST O, SHENFIELD A, KAREEM M, et al. Automated detection of atrial fibrillation using long short-term memory network with RR interval signals[J]. Computers in Biology and Medicine, 2018, 102: 327–335. doi: 10.1016/j.compbiomed.2018.07.001
    [14]
    张君彪, 熊家军, 兰旭辉, 等. 基于自适应滤波的高超声速滑翔目标三维跟踪算法[J]. 系统工程与电子技术, 2022, 44(2): 628–636. doi: 10.12305/j.issn.1001-506X.2022.02.33

    ZHANG Junbiao, XIONG Jiajun, LAN Xuhui, et al. 3D tracking algorithm of hypersonic gliding target based on adaptive filtering[J]. Systems Engineering and Electronics, 2022, 44(2): 628–636. doi: 10.12305/j.issn.1001-506X.2022.02.33
    [15]
    LI Guanghua, ZHANG Hongbo, and TANG Gguojian. Maneuver characteristics analysis for hypersonic glide vehicles[J]. Aerospace Science and Technology, 2015, 43: 321–328. doi: 10.1016/j.ast.2015.03.016
    [16]
    JOSHI A, SIVAN K, and AMMA S S. Predictor-corrector reentry guidance algorithm with path constraints for atmospheric entry vehicles[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1307–1318. doi: 10.2514/1.26306
    [17]
    陈克俊, 刘鲁华, 孟云鹤. 远程火箭飞行动力学与制导[M]. 北京: 国防工业出版社, 2014: 146–156.

    CHEN Kejun, LIU Luhua, MENG Yunhe. Launch Vehicle Flight Dynamics and Guidance[M]. Beijing: National Defense Industry Press, 2014: 146–156.
    [18]
    王璐璐, 秦玉亮, 王宏强, 等. 飞行器升阻比估计误差分析方法研究[J]. 雷达科学与技术, 2012, 10(2): 174–179,186. doi: 10.3969/j.issn.1672-2337.2012.02.011

    WANG Lulu, QIN Yuliang, WANG Hongqiang, et al. Study on vehicle lift-to-drag ratio estimation error analysis method[J]. Radar Science and Technology, 2012, 10(2): 174–179,186. doi: 10.3969/j.issn.1672-2337.2012.02.011
    [19]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [20]
    SAJJAD M, KHAN S, HUSSAIN T, et al. CNN-based anti-spoofing two-tier multi-factor authentication system[J]. Pattern Recognition Letters, 2019, 126: 123–131. doi: 10.1016/j.patrec.2018.02.015
    [21]
    HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
    [22]
    QING Xiangyun and NIU Yugang. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM[J]. Energy, 2018, 148: 461–468. doi: 10.1016/j.energy.2018.01.177
    [23]
    SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: A machine learning approach for precipitation Nowcasting[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 802–810.
    [24]
    CHEN Zhenghua, WU Min, ZHAO Rui, et al. Machine remaining useful life prediction via an attention-based deep learning approach[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2521–2531. doi: 10.1109/TIE.2020.2972443
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (783) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return