Advanced Search
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
LI Huijun, HU Shanshan, SONG Aiguo. Adaptive Assist-as-needed Upper Limb Mirror Control Strategy[J]. Journal of Electronics & Information Technology, 2022, 44(2): 437-445. doi: 10.11999/JEIT211001
Citation: LI Huijun, HU Shanshan, SONG Aiguo. Adaptive Assist-as-needed Upper Limb Mirror Control Strategy[J]. Journal of Electronics & Information Technology, 2022, 44(2): 437-445. doi: 10.11999/JEIT211001

Adaptive Assist-as-needed Upper Limb Mirror Control Strategy

doi: 10.11999/JEIT211001
Funds:  The National Key Research and Development Plan (2017YFB1303201)
  • Received Date: 2021-09-18
  • Accepted Date: 2022-01-20
  • Rev Recd Date: 2022-01-18
  • Available Online: 2022-01-22
  • Publish Date: 2022-02-25
  • In order to improve the initiative of hemiplegic patients and system anti-interference in the mirror rehabilitation training process, an upper limb mirror control strategy based on adaptive assist-as-needed is proposed. The strategy includes mainly two modules: mirror control and adaptive assist-as-needed control. The mirror module collects the position of the healthy side to calculate the desired position of the affected side, and compares it with the actual position of the affected side to obtain the position deviation; The adaptive assist-as-needed module combines thetraditional impedance control and the method for evaluating the movement state of the affected limb, automatically adjusts the auxiliary force to the affected limb in real time to maximize the active torque of the affected limb. Two experiments are designed to verify the effect of this strategy on patient initiative and system anti-interference. The experimental results show that the use of the proposed method for the mirror rehabilitation training system reduces effectively the average auxiliary force by 56.9%, and the position accuracy of the affected limb that follows the healthy limb is 5.6%, and the proposed method can effectively compensate 89% of the interfering external force. Therefore, the method improves effectively the initiative of the trainer, and at the same time has good anti-interference, and meets the requirements of mirror rehabilitation training.
  • loading
  • [1]
    马玉萍, 闫晓洁, 李晓华, 等. 针刺结合康复训练对脑卒中偏瘫患者肢体运动功能及生活质量的影响[J]. 中国老年学杂志, 2020, 40(1): 25–28. doi: 10.3969/j.issn.1005-9202.2020.01.009

    MA Yuping, YAN Xiaojie, LI Xiaohua, et al. Effects of acupuncture combined with rehabilitation training on motor function and quality of life of stroke patients with hemiplegia[J]. Chinese Journal of Gerontology, 2020, 40(1): 25–28. doi: 10.3969/j.issn.1005-9202.2020.01.009
    [2]
    CHENG Gaoxin, XU Linsen, XU Jiajun, et al. Robotic mirror therapy system for lower limb rehabilitation[J]. Industrial Robot, 2020, 48(2): 221–232. doi: 10.1108/IR-06-2020-0112
    [3]
    荣积峰, 丁力, 张雯, 等. 康复机器人结合镜像疗法对脑卒中偏瘫患者上肢功能的效果[J]. 中国康复理论与实践, 2019, 25(6): 709–713. doi: 10.3969/j.issn.1006-9771.2019.06.016

    RONG Jifeng, DING Li, ZHANG Wen, et al. Effects of robot-assisted therapy combined with mirror therapy on upper limbs rehabilitation in patients with hemiplegia after stroke[J]. Chinese Journal of Rehabilitation Theory and Practice, 2019, 25(6): 709–713. doi: 10.3969/j.issn.1006-9771.2019.06.016
    [4]
    陈臻, 刘佳敏, 陆晓, 等. 镜像康复机器人在偏瘫康复中的应用研究[J]. 中国康复医学杂志, 2020, 35(8): 903–906. doi: 10.3969/j.issn.1001-1242.2020.08.003

    CHEN Zhen, LIU Jiamin, LU Xiao, et al. Application research of mirror rehabilitation robot in hemiplegia rehabilitation[J]. Chinese Journal of Rehabilitation Medicine, 2020, 35(8): 903–906. doi: 10.3969/j.issn.1001-1242.2020.08.003
    [5]
    KLINKWAN P, KONGMAROENG C, MUENGTAWEEPONGSA S, et al. The effectiveness of mirror therapy to upper extremity rehabilitation in acute stroke patients[J]. Applied Science and Engineering Progress, To be published.
    [6]
    ZHANG Yuqian, XING Ying, LI Congqin, et al. Mirror therapy for unilateral neglect after stroke: A systematic review[J]. European Journal of Neurology, 2021, 29(1): 358–371. doi: 10.1111/ene.15122
    [7]
    WANG Weiwen and FU Lichen. Mirror therapy with an exoskeleton upper-limb robot based on IMU measurement system[C]. 2011 IEEE International Symposium on Medical Measurements and Applications, Bari, Italy, 2011.
    [8]
    SHAHBAZI M, ATASHZAR S F, TAVAKOLI M, et al. Therapist-in-the-Loop robotics-assisted mirror rehabilitation therapy: An Assist-as-Needed framework[C]. IEEE International Conference on Robotics and Automation, Seattle, USA, 2015.
    [9]
    瞿畅, 吴炳, 陈厚军, 等. 体感控制的上肢外骨骼镜像康复机器人系统[J]. 中国机械工程, 2018, 29(20): 2484–2489. doi: 10.3969/j.issn.1004-132X.2018.20.014

    QU Chang, WU Bing, CHEN Houjun, et al. Upper-limb exoskeletal mirror rehabilitation robot systems based on motion sensing control[J]. China Mechanical Engineering, 2018, 29(20): 2484–2489. doi: 10.3969/j.issn.1004-132X.2018.20.014
    [10]
    HOGAN N, KREBS H I, ROHRER B, et al. Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery[J]. Journal of Rehabilitation Research & Development, 2006, 43(5): 605. doi: 10.1682/JRRD.2005.06.0103
    [11]
    WARRAICH Z and KLEIM J A. Neural plasticity: The biological substrate for neurorehabilitation[J]. PM&R, 2010, 2(Suppl 12): S208–S219.
    [12]
    赵兴景, 朱杰, 罗翔. 自抗扰技术在下肢康复训练器中的应用[J]. 东南大学学报:自然科学版, 2019, 49(6): 1026–1032. doi: 10.3969/j.issn.1001-0505.2019.06.002

    ZHAO Xingjing, ZHU Jie, LUO Xiang. Application of ADRC in lower limb rehabilitation training apparatus[J]. Journal of Southeast University:Natural Science Edition, 2019, 49(6): 1026–1032. doi: 10.3969/j.issn.1001-0505.2019.06.002
    [13]
    周秦源, 邵晨阳, 邵念锋, 等. 基于滑模阻抗的双足机器人单腿柔顺性控制研究[J]. 传感器与微系统, 2021, 40(4): 26–28,32. doi: 10.13873/J.1000-9787(2021)04-0026-03

    ZHOU Qinyuan, SHAO Chenyang, SHAO Nianfeng, et al. Research on one-leg flexibility control of biped robot based on sliding mode impedance[J]. Transducer and Microsystem Technologies, 2021, 40(4): 26–28,32. doi: 10.13873/J.1000-9787(2021)04-0026-03
    [14]
    赵太飞, 宫春杰, 张港, 等. 一种无人机集群安全高效的分区集结控制策略[J]. 电子与信息学报, 2021, 43(8): 2181–2188. doi: 10.11999/JEIT200601

    ZHAO Taifei, GONG Chunjie, ZHANG Gang, et al. A safe and high efficiency control strategy of unmanned aerial vehicles partition rendezvous[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2181–2188. doi: 10.11999/JEIT200601
    [15]
    李根生, 佀国宁, 徐飞. 下肢外骨骼机器人控制策略研究进展[J]. 中国康复医学杂志, 2018, 33(12): 1488–1494. doi: 10.3969/j.issn.1001-1242.2018.12.025

    LI Gensheng, SI Guoning, and XU Fei. Research progress on control strategies of lower extremity exoskeleton robots[J]. Chinese Journal of Rehabilitation Medicine, 2018, 33(12): 1488–1494. doi: 10.3969/j.issn.1001-1242.2018.12.025
    [16]
    王嘉津, 左国坤, 张佳楫, 等. 腕功能康复机器人按需辅助控制策略研究[J]. 生物医学工程学杂志, 2020, 37(1): 129–135. doi: 10.7507/1001-5515.201902023

    WANG Jiajin, ZUO Guokun, ZHANG Jiaji, et al. Research on assist-as-needed control strategy of wrist function-rehabilitation robot[J]. Journal of Biomedical Engineering, 2020, 37(1): 129–135. doi: 10.7507/1001-5515.201902023
    [17]
    PEHLIVAN A U, LOSEY D P, and O'MALLEY M K. Minimal assist-as-needed controller for upper limb robotic rehabilitation[J]. IEEE Transactions on Robotics, 2016, 32(1): 113–124. doi: 10.1109/TRO.2015.2503726
    [18]
    LUO Lincong, PENG Liang, WANG Chen, et al. A greedy assist-as-needed controller for upper limb rehabilitation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3433–3443. doi: 10.1109/TNNLS.2019.2892157
    [19]
    欧阳云霞, 李会军, 宋爱国. 交互式自解耦桌面康复训练机器人系统[J]. 仪器仪表学报, 2021, 42(2): 171–179.

    OUYANG Yunxia, LI Huijun, and SONG Aiguo. Interactive self-decoupling desktop rehabilitation training robot system[J]. Chinese Journal of Scientific Instrument, 2021, 42(2): 171–179.
    [20]
    秦超龙, 宋爱国, 吴常铖, 等. 基于Unity3D与Kinect的康复训练机器人情景交互系统[J]. 仪器仪表学报, 2017, 38(3): 530–536. doi: 10.3969/j.issn.0254-3087.2017.03.003

    QIN Chaolong, SONG Aiguo, WU Changcheng, et al. Scenario interaction system of rehabilitation training robot based on Unity3D and Kinect[J]. Chinese Journal of Scientific Instrument, 2017, 38(3): 530–536. doi: 10.3969/j.issn.0254-3087.2017.03.003
    [21]
    秦欢欢, 宋爱国, 莫依婷, 等. 带有双手力觉反馈的人机交互系统设计[J]. 仪器仪表学报, 2018, 39(7): 66–73. doi: 10.19650/j.cnki.cjsi.J1803373

    QIN Huanhuan, SONG Aiguo, MO Yiting, et al. Design of human-machine system with two-handed force feedback[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 66–73. doi: 10.19650/j.cnki.cjsi.J1803373
    [22]
    潘礼正, 宋爱国, 徐国政, 等. 上肢康复机器人实时安全控制[J]. 机器人, 2012, 34(2): 197–203,210. doi: 10.3724/SP.J.1218.2012.00197

    PAN Lizheng, SONG Aiguo, XU Guozheng, et al. Real-time safety control of upper-limb rehabilitation robot[J]. Robot, 2012, 34(2): 197–203,210. doi: 10.3724/SP.J.1218.2012.00197
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (790) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return