Advanced Search
Volume 44 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
HAN Chen, LIU Aijun, AN Kang, TONG Xinhai, LIANG Xiaohu. Deployment and Networking Methods of UAV Swarm in Jamming Environments Based on Game Theory[J]. Journal of Electronics & Information Technology, 2022, 44(3): 860-870. doi: 10.11999/JEIT210992
Citation: HAN Chen, LIU Aijun, AN Kang, TONG Xinhai, LIANG Xiaohu. Deployment and Networking Methods of UAV Swarm in Jamming Environments Based on Game Theory[J]. Journal of Electronics & Information Technology, 2022, 44(3): 860-870. doi: 10.11999/JEIT210992

Deployment and Networking Methods of UAV Swarm in Jamming Environments Based on Game Theory

doi: 10.11999/JEIT210992
Funds:  The National Key Research and Development Program of China (2018YFB1801103), The National Natural Science Foundation of China (61901502), The Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu Province (BK20192002), The National Postdoctoral Program for Innovative Talents (BX20200101)
  • Received Date: 2021-09-16
  • Accepted Date: 2022-02-16
  • Rev Recd Date: 2022-02-16
  • Available Online: 2022-02-28
  • Publish Date: 2022-03-28
  • A deployment and networking methods of Unmanned Aerial Vehicle (UAV) swarm based on game theory in the jamming environments is investigated in this paper. Firstly, a Congestion-game based UAV swarm Deployment algorithm (CUD)is proposed. Each UAV can autonomously optimize its position through limited interaction with adjacent UAVs to increase the amount of collected data and enhance the anti-jamming capabilities. Secondly, a UAV Swarm Anti-jamming Coalition Formation algorithm (USACF) is proposed, which enables the UAV swarm to form dynamic sub-networks in a distributed way under the threat of hostile jamming, thus improving the transmission performance and enhancing the robustness and reliability of the UAV networks. Furthermore, it is proved theoretically that the proposed game model can achieve a stable Nash equilibrium with the aid of exact potential game theory. Finally, simulation results verify that the proposed algorithms have obvious performance improvement compared with the conventional algorithms.
  • loading
  • [1]
    JIA Ziye, SHENG Min, LI Jiandong, et al. LEO-satellite-assisted UAV: Joint trajectory and data collection for internet of remote things in 6G aerial access networks[J]. IEEE Internet of Things Journal, 2021, 8(12): 9814–9826. doi: 10.1109/JIOT.2020.3021255
    [2]
    ZHAO Nan, LI Yanxin, ZHANG Shun, et al. Security enhancement for NOMA-UAV networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3994–4005. doi: 10.1109/TVT.2020.2972617
    [3]
    李晓辉, 方坤, 樊韬, 等. 基于支持向量机的无人机定位信号分离算法研究[J]. 电子与信息学报, 2021, 43(9): 2601–2607. doi: 10.11999/JEIT200725

    LI Xiaohui, FANG Kun, FAN Tao, et al. Research on unmanned aerial vehicle location signal separation algorithm based on support vector machines[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2601–2607. doi: 10.11999/JEIT200725
    [4]
    ZHAO Nan, LU Weidang, SHENG Min, et al. UAV-assisted emergency networks in disasters[J]. IEEE Wireless Communications, 2019, 26(1): 45–51. doi: 10.1109/MWC.2018.1800160
    [5]
    高杨, 李东生, 程泽新. 无人机分布式集群态势感知模型研究[J]. 电子与信息学报, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877

    GAO Yang, LI Dongsheng, and CHENG Zexin. UAV distributed swarm situation awareness model[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877
    [6]
    WANG Xue, JIN Tao, HU Liangshuai, et al. Energy-efficient power allocation and Q-learning-based relay selection for relay-aided D2D communication[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6452–6462. doi: 10.1109/TVT.2020.2985873
    [7]
    WANG Haichao, WANG Jinlong, DING Guoru, et al. Robust spectrum sharing in air-ground integrated networks: Opportunities and challenges[J]. IEEE Wireless Communications, 2020, 27(3): 148–155. doi: 10.1109/MWC.001.1900398
    [8]
    FOTOUHI A, QIANG Haoran, DING Ming, et al. Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges[J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3417–3442. doi: 10.1109/COMST.2019.2906228
    [9]
    BHATTACHARYA S and BAŞAR T. Game-theoretic analysis of an aerial jamming attack on a UAV communication network[C]. 2010 American Control Conference, Baltimore, USA, 2010: 818–823.
    [10]
    张孟杰, 赵睿, 王培臣, 等. 基于强化学习的无人机辅助物联网抗敌意干扰算法[J]. 信号处理, 2021, 37(1): 11–18. doi: 10.16798/j.issn.1003-0530.2021.01.002

    ZHANG Mengjie, ZHAO Rui, WANG Peichen, et al. Anti-jamming algorithm with reinforcement learning in UAV-aided internet of things[J]. Journal of Signal Processing, 2021, 37(1): 11–18. doi: 10.16798/j.issn.1003-0530.2021.01.002
    [11]
    LV Shichao, XIAO Liang, HU Qing, et al. Anti-jamming power control game in unmanned aerial vehicle networks[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6.
    [12]
    李明, 任清华, 吴佳隆. 无人机多域联合抗干扰智能决策算法研究[J]. 西北工业大学学报, 2021, 39(2): 367–374. doi: 10.3969/j.issn.1000-2758.2021.02.017

    LI Ming, REN Qinghua, and WU Jialong. Exploring UAV's multi-domain joint anti-jamming intelligent decision algorithm[J]. Journal of Northwestern Polytechnical University, 2021, 39(2): 367–374. doi: 10.3969/j.issn.1000-2758.2021.02.017
    [13]
    XIAO Liang, LU Xiaozhen, XU Dongjin, et al. UAV Relay in VANETs against smart jamming with reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4087–4097. doi: 10.1109/TVT.2018.2789466
    [14]
    LU Xiaozhen, XIAO Liang, DAI Canhuang, et al. UAV-aided cellular communications with deep reinforcement learning against jamming[J]. IEEE Wireless Communications, 2020, 27(4): 48–53. doi: 10.1109/MWC.001.1900207
    [15]
    DUO Bin, WU Qingqing, YUAN Xiaojun, et al. Anti-jamming 3D trajectory design for UAV-enabled wireless sensor networks under probabilistic LoS channel[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 16288–16293. doi: 10.1109/TVT.2020.3040334
    [16]
    SANJAB A, SAAD W, and BAŞAR T. Prospect theory for enhanced cyber-physical security of drone delivery systems: A network interdiction game[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6.
    [17]
    KUO Y C, CHIU J H, SHEU J P, et al. UAV deployment and IoT device association for energy-efficient data-gathering in fixed-wing multi-UAV networks[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(5): 1934–1946. doi: 10.1109/TGCN.2021.3093453
    [18]
    ZHANG Xiao and DUAN Lingjie. Fast deployment of UAV networks for optimal wireless coverage[J]. IEEE Transactions on Mobile Computing, 2019, 18(3): 588–601. doi: 10.1109/TMC.2018.2840143
    [19]
    ZHANG Xiao and DUAN Lingjie. Energy-saving deployment algorithms of UAV swarm for sustainable wireless coverage[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 10320–10335. doi: 10.1109/TVT.2020.3004855
    [20]
    KOYUNCU E, SHABANIGHAZIKELAYEH M, and SEFEROGLU H. Deployment and trajectory optimization of UAVs: A quantization theory approach[J]. IEEE Transactions on Wireless Communications, 2018, 17(12): 8531–8546. doi: 10.1109/TWC.2018.2878021
    [21]
    SUN Sujunjie, ZHANG Guopeng, MEI Haibo, et al. Optimizing Multi-UAV deployment in 3-D space to minimize task completion time in UAV-enabled mobile edge computing systems[J]. IEEE Communications Letters, 2021, 25(2): 579–583. doi: 10.1109/LCOMM.2020.3029144
    [22]
    MOZAFFARI M, SAAD W, BENNIS M, et al. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage[J]. IEEE Communications Letters, 2016, 20(8): 1647–1650. doi: 10.1109/LCOMM.2016.2578312
    [23]
    WANG Jie, LIU Miao, SUN Jinlong, et al. Multiple unmanned-aerial-vehicles deployment and user pairing for nonorthogonal multiple access schemes[J]. IEEE Internet of Things Journal, 2021, 8(3): 1883–1895. doi: 10.1109/JIOT.2020.3015702
    [24]
    HAN Chen, LIU Aijun, WANG Haichao, et al. Dynamic anti-jamming coalition for satellite-enabled army IoT: A distributed game approach[J]. IEEE Internet of Things Journal, 2020, 7(11): 10932–10944. doi: 10.1109/JIOT.2020.2991585
    [25]
    赵太飞, 宫春杰, 张港, 等. 一种无人机集群安全高效的分区集结控制策略[J]. 电子与信息学报, 2021, 43(8): 2181–2188. doi: 10.11999/JEIT200601

    ZHAO Taifei, GONG Chunjie, ZHANG Gang, et al. A safe and high efficiency control strategy of unmanned aerial vehicles partition rendezvous[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2181–2188. doi: 10.11999/JEIT200601
    [26]
    程潇, 董超, 陈贵海, 等. 面向无人机自组网编队控制的通信组网技术[J]. 计算机科学, 2018, 45(11): 1–12,51. doi: 10.11896/j.issn.1002-137X.2018.11.001

    CHENG Xiao, DONG Chao, CHEN Guihai, et al. Communication and networking techniques for formation control in UAV Ad hoc networks[J]. Computer Science, 2018, 45(11): 1–12,51. doi: 10.11896/j.issn.1002-137X.2018.11.001
    [27]
    钟剑峰, 王红军. 基于5G和无人机智能组网的应急通信技术[J]. 电讯技术, 2020, 60(11): 1290–1296. doi: 10.3969/j.issn.1001-893x.2020.11.005

    ZHONG Jianfeng and WANG Hongjun. Emergency communication technology based on 5G and drone intelligent networking[J]. Telecommunication Engineering, 2020, 60(11): 1290–1296. doi: 10.3969/j.issn.1001-893x.2020.11.005
    [28]
    逯建琦, 南建国, 李雪. 改进的贪婪算法在无人机组网中的研究与应用[J]. 空军工程大学学报:自然科学版, 2020, 21(2): 41–46. doi: 10.3969/j.issn.1009-3516.2020.02.006

    LU Jianqi, NAN Jianguo, and LI Xue. Research and application of improved greedy algorithm in UAV network[J]. Journal of Air Force Engineering University:Natural Science Edition, 2020, 21(2): 41–46. doi: 10.3969/j.issn.1009-3516.2020.02.006
    [29]
    张建东, 李丹, 任齐凤, 等. 基于复杂网络有人机/无人机组网系统同步性分析[J]. 计算机应用, 2016, 36(S1): 12–15,24.

    ZHANG Jiandong, LI Dan, REN Qifeng, et al. Synchronization analysis for manned/unmanned aerial vehicle networking system based on complex network[J]. Journal of Computer Applications, 2016, 36(S1): 12–15,24.
    [30]
    周子为, 段海滨, 范彦铭. 仿雁群行为机制的多无人机紧密编队[J]. 中国科学:技术科学, 2017, 47(3): 230–238. doi: 10.1360/N006-00138

    ZHOU Ziwei, DUAN Haibin, and FAN Yanming. Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese[J]. Scientia Sinica Technologica, 2017, 47(3): 230–238. doi: 10.1360/N006-00138
    [31]
    王泊涵, 吴婷钰, 李文浩, 等. 基于多智能体强化学习的大规模无人机集群对抗[J]. 系统仿真学报, 2021, 33(8): 1739–1753. doi: 10.16182/j.issn1004731x.joss.21-0476

    WANG Bohan, WU Tingyu, LI Wenhao, et al. Large-scale UAVs confrontation based on multi-agent reinforcement learning[J]. Journal of System Simulation, 2021, 33(8): 1739–1753. doi: 10.16182/j.issn1004731x.joss.21-0476
    [32]
    WANG Liming and CHI Yuejie. Stochastic approximation and memory-limited subspace tracking for poisson streaming data[J]. IEEE Transactions on Signal Processing, 2018, 66(4): 1051–1064. doi: 10.1109/TSP.2017.2780041
    [33]
    PANG Xiaowei, LIU Mingqian, ZHAO Nan, et al. Secrecy analysis of UAV-based mmwave relaying networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4990–5002. doi: 10.1109/TWC.2021.3064365
    [34]
    罗睿辞, 叶蔚, 刘学洋, 等. 基于拥塞博弈的微服务运行时资源管理方法[J]. 电子学报, 2019, 47(7): 1497–1505. doi: 10.3969/j.issn.0372-2112.2019.07.013

    LUO Ruici, YE Wei, Liu Xueyang, et al. A runtime resource management approach of microservices based on congestion game[J]. Acta Electronica Sinica, 2019, 47(7): 1497–1505. doi: 10.3969/j.issn.0372-2112.2019.07.013
    [35]
    LIU Dianxiong, WANG Jinlong, XU Kun, et al. Task-driven relay assignment in distributed UAV communication networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 11003–11017. doi: 10.1109/TVT.2019.2942095
    [36]
    李翠莲, 杨震, 李君. 分组多用户检测联盟模型与联盟形成算法研究[J]. 电子学报, 2010, 38(10): 2447–2452.

    LI Cuilian, YANG Zhen, and LI Jun. Research on group multiuser detection coalition models and coalition formation algorithm[J]. Acta Electronica Sinica, 2010, 38(10): 2447–2452.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (1584) PDF downloads(289) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return