Citation: | ZHAO Jiaqi, ZHOU Yong, HE Xin, BU Yifan, YAO Rui, GUO Rui. Research Progress Analysis of Point Cloud Segmentation Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4426-4440. doi: 10.11999/JEIT210972 |
[1] |
王肖锋, 张明路, 刘军. 基于增量式双向主成分分析的机器人感知学习方法研究[J]. 电子与信息学报, 2018, 40(3): 618–625. doi: 10.11999/JEIT170561
WANG Xiaofeng, ZHANG Minglu, and Liu Jun. Robot perceptual learning method based on incremental bidirectional principal component analysis[J]. Journal of Electronics &Information Technology, 2018, 40(3): 618–625. doi: 10.11999/JEIT170561
|
[2] |
周汉飞, 李禹, 粟毅. 利用多角度SAR数据实现三维成像[J]. 电子与信息学报, 2013, 35(10): 2467–2474. doi: 10.3724/SP.J.1146.2012.01534
ZHOU Hanfei, LI Yu, and SU Yi. Three-dimensional imaging with multi-aspect SAR data[J]. Journal of Electronics &Information Technology, 2013, 35(10): 2467–2474. doi: 10.3724/SP.J.1146.2012.01534
|
[3] |
QI C R, LIU Wei, WU Chenxia, et al. Frustum pointnets for 3D object detection from RGB-D data[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 918–927.
|
[4] |
陈境焕, 李海艳, 林景亮. 基于深度学习的零件点云分割算法研究[J]. 机电工程, 2020, 37(3): 326–331. doi: 10.3969/j.issn.1001-4551.2020.03.020
CHEN Jinghuan, LI Haiyan, and LIN Jingliang. Part point cloud segmentation algorithm based on deep learning[J]. Mechanical &Electrical Engineering, 2020, 37(3): 326–331. doi: 10.3969/j.issn.1001-4551.2020.03.020
|
[5] |
KLOKOV R and LEMPITSKY V. Escape from cells: Deep kd-networks for the recognition of 3D point cloud models[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 863–872.
|
[6] |
CHEN Xuzhan, CHEN Youping, and NAJJARAN H. 3D object classification with point convolution network[C]. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, Canada, 2017: 783–788.
|
[7] |
HU Qingyong, YANG Bo, XIE Linhai, et al. RandLA-Net: Efficient semantic segmentation of large-scale point clouds[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11105–11114.
|
[8] |
CHEN Xiaozhi, MA Huimin, WAN Ji, et al. Multi-view 3D object detection network for autonomous driving[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6526–6534.
|
[9] |
ZHOU Dingfu, FANG Jin, SONG Xibin, et al. Joint 3D instance segmentation and object detection for autonomous driving[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1836–1846.
|
[10] |
QI C R, SU Hao, MO Kaichun, et al. Pointnet: Deep learning on point sets for 3D classification and segmentation[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 77–85.
|
[11] |
LI Ruihui, LI Xianzhi, HENG P A, et al. PointAugment: An auto-augmentation framework for point cloud classification[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 6377–6386.
|
[12] |
GADELHA M, WANG Rui, and MAJI S. Multiresolution tree networks for 3D point cloud processing[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 105–122.
|
[13] |
GRAHAM B, ENGELCKE M, and VAN DER MAATEN L. 3D semantic segmentation with submanifold sparse convolutional networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9224–9232.
|
[14] |
HUANG Qiangui, WANG Weiyue, and NEUMANN U. Recurrent slice networks for 3D segmentation of point clouds[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2626–2635.
|
[15] |
KUMAR K S C and AL-STOUHI S. Multi-scale voxel class balanced ASPP for LIDAR pointcloud semantic segmentation[C]. 2021 IEEE Winter Conference on Applications of Computer Vision Workshops, Waikola, USA, 2021: 117–124.
|
[16] |
QI C R, YI Li, SU Hao, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5105–5114.
|
[17] |
PENG Haotian, ZHOU Bin, YIN Liyuan, et al. Semantic part segmentation of single-view point cloud[J]. Science China Information Sciences, 2020, 63(12): 224101. doi: 10.1007/s11432-018-9689-9
|
[18] |
ZHANG Jinming, HU Xiangyun, and DAI Hengming. A graph-voxel joint convolution neural network for ALS point cloud segmentation[J]. IEEE Access, 2020, 8: 139781–139791. doi: 10.1109/ACCESS.2020.3013293
|
[19] |
SU Hang, JAMPANI V, SUN Deqing, et al. SPLATNet: Sparse lattice networks for point cloud processing[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2530–2539.
|
[20] |
秦彩杰, 管强. 三维点云数据分割研究现状[J]. 宜宾学院学报, 2017, 17(6): 30–35. doi: 10.3969/j.issn.1671-5365.2017.06.007
QIN Caijie and GUAN Qiang. Research status of 3D point cloud data segmentation[J]. Journal of Yibin University, 2017, 17(6): 30–35. doi: 10.3969/j.issn.1671-5365.2017.06.007
|
[21] |
CUI Yaodong, CHEN Ren, CHU Wenbo, et al. Deep learning for image and point cloud fusion in autonomous driving: A review[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 722–739.
|
[22] |
ZHANG Jiaying, ZHAO Xiaoli, CHEN Zheng, et al. A review of deep learning-based semantic segmentation for point cloud[J]. IEEE Access, 2019, 7: 179118–179133. doi: 10.1109/ACCESS.2019.2958671
|
[23] |
俞斌, 董晨, 刘延华, 等. 基于深度学习的点云分割方法综述[J]. 计算机工程与应用, 2020, 56(1): 38–45. doi: 10.3778/j.issn.1002-8331.1910-0157
YU Bin, DONG Chen, LIU Yanhua, et al. Deep learning based point cloud segmentation: A survey[J]. Computer Engineering and Applications, 2020, 56(1): 38–45. doi: 10.3778/j.issn.1002-8331.1910-0157
|
[24] |
LIU Kui and KANG Guixia. Multiview convolutional neural networks for lung nodule classification[J]. The Journal of Engineering, 2017, 27(1): 12–22. doi: 10.1002/ima.22206
|
[25] |
SU Hang, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 945–953.
|
[26] |
BOULCH A, GUERRY J, LE SAUX B, et al. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks[J]. Computers & Graphics, 2018, 71: 189–198. doi: 10.1016/j.cag.2017.11.010
|
[27] |
YOU Haoxuan, FENG Yifan, ZHAO Xibin, et al. PVRNet: Point-view relation neural network for 3D shape recognition[C]. The 33rd AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 9119–9126.
|
[28] |
WANG Wei, XU Yuan, REN Yingchao, et al. Parsing of urban facades from 3D point clouds based on a novel multi-view domain[J]. Photogrammetric Engineering & Remote Sensing, 2021, 87(4): 283–293. doi: 10.14358/PERS.87.4.283
|
[29] |
郑阳, 林春雨, 廖康, 等. 场景视点偏移的激光雷达点云分割[J]. 中国图象图形学报, 2021, 26(10): 2514–2523. doi: 10.11834/jig.200424
ZHENG Yang, LIN Chunyu, LIAO Kang, et al. LiDAR point cloud segmentation through scene viewpoint offset[J]. Journal of Image and Graphics, 2021, 26(10): 2514–2523. doi: 10.11834/jig.200424
|
[30] |
KUNDU A, YIN Xiaoqi, FATHI A, et al. Virtual multi-view fusion for 3D semantic segmentation[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 518–535.
|
[31] |
WU Zhirong, SONG Shuran, KHOSLA A, et al. 3D shapenets: A deep representation for volumetric shapes[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1912–1920.
|
[32] |
HUANG Jing and YOU Suya. Point cloud labeling using 3D convolutional neural network[C]. The 2016 23rd International Conference on Pattern Recognition, Cancun, Mexico, 2016: 2670–2675.
|
[33] |
DAI A and NIEßNER M. 3DMV: Joint 3D-multi-view prediction for 3D semantic scene segmentation[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 458–474.
|
[34] |
LE T and DUAN Ye. PointGrid: A deep network for 3D shape understanding[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9204–9214.
|
[35] |
KUMAWAT S and RAMAN S. LP-3DCNN: Unveiling local phase in 3D convolutional neural networks[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4898–4907.
|
[36] |
TANG Haotian, LIU Zhijian, ZHAO Shengyu, et al. Searching efficient 3D architectures with sparse point-voxel convolution[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 685–702.
|
[37] |
孙一珺, 胡辉, 李子钥, 等. 适用于点云数据的注意力机制研究[J/OL]. 计算机工程与应用. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSGG20211011003&uniplatform=NZKPT&v=3Qinehu7XHJEb8HcZQOml03a3GuI8TbdofNxjvnLvZ_l8jGtSqM5aNjUQVMqm-LC, 2021.
SUN Yijun, HU Hui, LI Ziyue, et al. Research on attention mechanism for point cloud data[J/OL]. Computer Engineering and Applications. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSGG20211011003&uniplatform=NZKPT&v=3Qinehu7XHJEb8HcZQOml03a3GuI8TbdofNxjvnLvZ_l8jGtSqM5aNjUQVMqm-LC, 2021.
|
[38] |
XIE Saining, LIU Sainan, CHEN Zeyu, et al. Attentional ShapeContextNet for point cloud recognition[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4606–4615.
|
[39] |
ZHANG Zhiyuan, HUA B S, CHEN Wei, et al. Global context aware convolutions for 3D point cloud understanding[C]. 2020 International Conference on 3D Vision, Fukuoka, Japan, 2020: 210–219.
|
[40] |
XU Mutian, DING Runyu, ZHAO Hengshuang, et al. PAConv: Position adaptive convolution with dynamic kernel assembling on point clouds[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 3172–3181.
|
[41] |
LI Guohao, QIAN Guocheng, DELGADILLO I C, et al. SGAS: Sequential greedy architecture search[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1617–1627.
|
[42] |
XU Yifan, FAN Tianqi, XU Mingye, et al. SpiderCNN: Deep learning on point sets with parameterized convolutional filters[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 95–105.
|
[43] |
HUA B S, TRAN M K, and YEUNG S K. Pointwise convolutional neural networks[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 984–993.
|
[44] |
KOMARICHEV A, ZHONG Zichun, and HUA Jing. A-CNN: Annularly convolutional neural networks on point clouds[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7413–7422.
|
[45] |
高金金, 李潞洋. 基于局部关系卷积的点云分类与分割模型[J]. 计算机工程与应用, 2022, 58(19): 276–283.
GAO Jinjin and LI Luyang. Local relation convolution network for 3D point cloud classification and segmentation[J]. Computer Engineering and Applications, 2022, 58(19): 276–283.
|
[46] |
LIU Yongcheng, FAN Bin, XIANG Shiming, et al. Relation-shape convolutional neural network for point cloud analysis[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 8887–8896.
|
[47] |
LIU Yongcheng, FAN Bin, MENG Gaofeng, et al. Densepoint: Learning densely contextual representation for efficient point cloud processing[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 5238–5247.
|
[48] |
WU Wenxuan, QI Zhongang, and LI Fuxin. PointConv: Deep convolutional networks on 3D point clouds[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9613–9622,
|
[49] |
LIN Zhihao, YU Shengyu, WANG Y C F. Convolution in the cloud: Learning deformable kernels in 3D graph convolution networks for point cloud analysis[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1797–1806.
|
[50] |
WANG Fei, ZHANG Xing, JIANG Yong, et al. PatchCNN: An explicit convolution operator for point clouds perception[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 726–730. doi: 10.1109/LGRS.2020.2981507
|
[51] |
SHEN Yiru, FENG Chen, YANG Yaoqing, et al. Mining point cloud local structures by kernel correlation and graph pooling[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4548–4557.
|
[52] |
WANG Lei, HUANG Yuchun, HOU Yaolin, et al. Graph attention convolution for point cloud semantic segmentation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 10288–10297.
|
[53] |
FENG Yifan, YOU Haoxuan, ZHANG Zizhao, et al. Hypergraph neural networks[C]. The 33rd AAAI Conference on Artificial Intelligence, Hawaii, USA, 2019: 3558–3565.
|
[54] |
JIANG Jianwen, WEI Yuxuan, FENG Yifan, et al. Dynamic hypergraph neural networks[C]. The 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019: 2635–2641.
|
[55] |
XU Qiangeng, SUN Xudong, WU C Y, et al. Grid-GCN for fast and scalable point cloud learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 5660–5669.
|
[56] |
ENGELMANN F, KONTOGIANNI T, HERMANS A, et al. Exploring spatial context for 3D semantic segmentation of point clouds[C]. 2017 IEEE International Conference on Computer Vision Workshops, Venice, Italy, 2017: 716–724.
|
[57] |
YE Xiaoqing, LI Jiamao, HUANG Hexiao, et al. 3D recurrent neural networks with context fusion for point cloud semantic segmentation[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 415–430.
|
[58] |
ZHAO Zongyue, LIU Min, and RAMANI K. DAR-Net: Dynamic aggregation network for semantic scene segmentation[J]. arXiv: 1907.12022.
|
[59] |
LIU Fangyu, LI Shuaipeng, ZHANG Liqiang, et al. 3DCNN-DQN-RNN: A deep reinforcement learning framework for semantic parsing of large-scale 3D point clouds[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5679–5688.
|
[60] |
QIN Can, YOU Haoxuan, WANG Lichen, et al. PointDAN: A multi-scale 3D domain adaption network for point cloud representation[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 7192–7203.
|
[61] |
HAN Zhizhong, WANG Xiyang, LIU Yushen, et al. Multi-angle point cloud-VAE: Unsupervised feature learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half prediction[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 10441–10450.
|
[62] |
CHEN Nenglun, LIU Lingjie, CUI Zhiming, et al. Unsupervised learning of intrinsic structural representation points[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9118–9127.
|
[63] |
ZAMORSKI M, ZIEBA M, KLUKOWSKI P, et al. Adversarial autoencoders for compact representations of 3D point clouds[J]. Computer Vision and Image Understanding, 2020, 193: 102921. doi: 10.1016/j.cviu.2020.102921
|
[64] |
RAO Yongming, LU Jiwen, and ZHOU Jie. Global-local bidirectional reasoning for unsupervised representation learning of 3D point clouds[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 5375–5384.
|
[65] |
CHANG A X, FUNKHOUSER T, GUIBAS L, et al. ShapeNet: An information-rich 3D model repository[J]. arXiv: 1512.03012, 2015.
|
[66] |
DAI A, CHANG A X, SAVVA M, et al. ScanNet: Richly-annotated 3D reconstructions of indoor scenes[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2432–2443.
|
[67] |
HACKEL T, SAVINOV N, LADICKY L, et al. Semantic3D. net: A new large-scale point cloud classification benchmark[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-1/W1: 91–98. doi: 10.5194/isprs-annals-IV-1-W1-91-2017
|