Advanced Search
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
CUI Li, XU Chengqian. Constructions of Two Optimal Zero Correlation Zone Aperiodic Complementary Sequence Sets[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4304-4311. doi: 10.11999/JEIT210950
Citation: CUI Li, XU Chengqian. Constructions of Two Optimal Zero Correlation Zone Aperiodic Complementary Sequence Sets[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4304-4311. doi: 10.11999/JEIT210950

Constructions of Two Optimal Zero Correlation Zone Aperiodic Complementary Sequence Sets

doi: 10.11999/JEIT210950
Funds:  The National Natural Science Foundation of China (61671402), The Natural Science Foundation of Hebei Province (F2020203043), The Natural Science Researh Programs of Hebei Educational Committee (ZD2021105)
  • Received Date: 2021-09-07
  • Accepted Date: 2021-12-06
  • Rev Recd Date: 2021-11-29
  • Available Online: 2021-12-06
  • Publish Date: 2022-12-16
  • Based on orthogonal matrices, constructions of two Zero Correlation Zone (ZCZ) Aperiodic Complementary Sequence Sets (ZACSS) are proposed through different matrix transformation methods. Under the condition that the order of the orthogonal matrices can be evenly divided by the length of the zero-correlation zone, the parameters of obtained sequence sets are optimal, and the length of the ZCZ can be chosen flexibly. The sequence sets are constructed by the first method have ideal autocorrelation complementarity, and by further grouping, a set of intra-group complementary sequence sets can be obtained. A large number of optimal ZACSS can be constructed by different kinds of initial matrices and orthogonal matrices. The resultant sequence sets proposed in this paper can be applied to Multi-Carrier Code Division Multiple Access (MC-CDMA) systems as user address codes to eliminate multipath interference and multiple access interference.
  • loading
  • [1]
    GOLAY M. Complementary series[J]. IRE Transactions on Information Theory, 1961, 7(2): 82–87. doi: 10.1109/TIT.1961.1057620
    [2]
    TSENG C C and LIU C. Complementary sets of sequences[J]. IEEE Transactions on Information Theory, 1972, 18(5): 644–652. doi: 10.1109/TIT.1972.1054860
    [3]
    FAN Pingzhi, YUAN Weina, and TU Yifeng. Z-complementary binary sequences[J]. IEEE Signal Processing Letters, 2007, 14(8): 509–512. doi: 10.1109/LSP.2007.891834
    [4]
    张振宇, 陈卫, 曾凡鑫, 等. 多载波码分多址通信系统中抑制干扰的序列设计[J]. 电子与信息学报, 2009, 31(10): 2354–2358. doi: 10.3724/SP.J.1146.2008.01388

    ZHANG Zhenyu, CHEN Wei, ZENG Fanxin, et al. Construction of interference-resistant sequences for multi-carrier CDMA communication systems[J]. Journal of Electronics &Information Technology, 2009, 31(10): 2354–2358. doi: 10.3724/SP.J.1146.2008.01388
    [5]
    TU Yifeng, FAN Pingzhi, LI Hao, et al. A simple method for generating optimal Z-periodic complementary sequence set based on phase shift[J]. IEEE Signal Processing Letters, 2010, 17(10): 891–893. doi: 10.1109/LSP.2010.2068288
    [6]
    LI Yubo, XU Chengqian, JING Nan, et al. Constructions of Z-periodic complementary sequence set with flexible flock size[J]. IEEE Communications Letters, 2014, 18(2): 201–204. doi: 10.1109/LCOMM.2013.121813.132021
    [7]
    KE Pinhui and ZHOU Zhengchun. A generic construction of Z-periodic complementary sequence sets with flexible flock size and zero correlation zone length[J]. IEEE Signal Processing Letters, 2015, 22(9): 1462–1466. doi: 10.1109/LSP.2014.2369512
    [8]
    白子祎, 刘凯. 组间零相关区周期互补序列集的构造[J/OL]. 燕山大学学报, https://kns.cnki.net/kcms/detail/13.1219.N.20210512.0928.026.html, 2021.

    BAI Ziyi and LIU Kai. Construction of inter-group zero correlation zone periodic complementary sequence sets[J/OL]. Journal of Yanshan University, https://kns.cnki.net/kcms/detail/13.1219.N.20210512.0928.026.html, 2021.
    [9]
    LIU Kai and NI Jia. Construction of gaussian integer periodic complementary sequence set with zero correlation zone[C]. 2020 International Symposium on Automation, Information and Computing (ISAIC 2020), Beijing, China, 2020: 012177 .
    [10]
    李玉博, 田立影. 基于正交矩阵构造非周期组间互补序列集[J]. 电子与信息学报, 2018, 40(8): 2028–2032. doi: 10.11999/JEIT171005

    LI Yubo and TIAN Liying. Construction of inter-group complementary sequence sets based on orthogonal matrices[J]. Journal of Electronics &Information Technology, 2018, 40(8): 2028–2032. doi: 10.11999/JEIT171005
    [11]
    LI Yubo, SUN Jia’an, XU Chengqian, et al. Constructions of optimal zero correlation zone aperiodic complementary sequence sets[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100-A(3): 908–912. doi: 10.1587/transfun.E100.A.908
    [12]
    陈晓玉, 苏荷茹, 高茜超. 一类最优的零相关区非周期互补序列集构造法[J]. 电子与信息学报, 2021, 43(2): 461–466. doi: 10.11999/JEIT190703

    CHEN Xiaoyu, SU Heru, and GAO Xichao. Construction of optimal zero correlation zone aperiodic complementary sequence sets[J]. Journal of Electronics &Information Technology, 2021, 43(2): 461–466. doi: 10.11999/JEIT190703
    [13]
    ZENG Fanxin, ZENG Xiaoping, ZHANG Zhenyu, et al. New construction method for quaternary aperiodic, periodic, and Z-complementary sequence sets[J]. Journal of Communications and Networks, 2012, 14(3): 230–236. doi: 10.1109/JCN.2012.6253082
    [14]
    CHEN Xiaoyu, LI Guanmin, and LI Huanchang. Two constructions of zero correlation zone aperiodic complementary sequence sets[J]. IET Communications, 2020, 14(4): 556–560. doi: 10.1049/iet-com.2019.0599
    [15]
    LI Xudong, FAN Pingzhi, TANG Xiaohu, et al. Quadriphase Z-complementary sequences[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2010, E93-A(11): 2251–2257. doi: 10.1587/transfun.E93.A.2251
    [16]
    张振宇, 曾凡鑫, 宣贵新, 等. MC-CDMA系统中具有组内互补特性的序列构造[J]. 通信学报, 2011, 32(3): 27–32,39. doi: 10.3969/j.issn.1000-436X.2011.03.004

    ZHANG Zhenyu, ZENG Fanxin, XUAN Guixin, et al. Design of sequences with intra-group complementary properties for MC-CDMA systems[J]. Journal on Communications, 2011, 32(3): 27–32,39. doi: 10.3969/j.issn.1000-436X.2011.03.004
    [17]
    WU S W and CHEN Chaoyu. Optimal Z-complementary sequence sets with good peak-to-average power-ratio property[J]. IEEE Signal Processing Letters, 2018, 25(10): 1500–1504. doi: 10.1109/LSP.2018.2864705
    [18]
    XIE Chunlei, SUN Yu, and MING Yang. Constructions of optimal binary Z-complementary sequence sets with large zero correlation zone[J]. IEEE Signal Processing Letters, 2021, 28: 1694–1698. doi: 10.1109/LSP.2021.3104739
    [19]
    ADHIKARY A R and MAJHI S. New construction of optimal aperiodic Z-complementary sequence sets of odd-lengths[J]. Electronics Letters, 2019, 55(19): 1043–1045. doi: 10.1049/el.2019.1828
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (871) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return