Advanced Search
Volume 44 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
ZHU Yunan, XIE Fangtong, ZHANG Mingliang, WANG Biao, GE Huilin. Index Detection for Underwater Acoustic Multi-carrier Communication Based on Deep Bidirectional Long Short-term Memory Network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1984-1990. doi: 10.11999/JEIT210949
Citation: ZHU Yunan, XIE Fangtong, ZHANG Mingliang, WANG Biao, GE Huilin. Index Detection for Underwater Acoustic Multi-carrier Communication Based on Deep Bidirectional Long Short-term Memory Network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1984-1990. doi: 10.11999/JEIT210949

Index Detection for Underwater Acoustic Multi-carrier Communication Based on Deep Bidirectional Long Short-term Memory Network

doi: 10.11999/JEIT210949
Funds:  The National Natural Science Foundation of China (52071164), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_3161)
  • Received Date: 2021-09-07
  • Accepted Date: 2021-11-18
  • Rev Recd Date: 2021-11-11
  • Available Online: 2021-11-25
  • Publish Date: 2022-06-21
  • When the Index Modulated Filter Bank MultiCarrier (FBMC-IM) underwater acoustic communication system carries out signal detection, the first step is to determine the index of the active subcarriers according to the recovered data after equalization. In this paper, the advantage of Bidirectional Long Short-Term Memory (BLSTM) network for feature extraction of chronological signals is combined, the deep learning theory is introduced into the concept of underwater acoustic signal processing, and an index detection method based on deep BLSTM is proposed. The improved algorithm can increase the estimation accuracy by transforming the index detection into a data-driven multivariate classification. Compared with the traditional methods, the proposed algorithm has lower computational complexity but better bit error ratio performance. The superiority and robustness of the proposed method are verified by the simulation based on lake trial channel data, which can be considered as a general detection method under index modulation mechanism.
  • loading
  • [1]
    LI Jianghui. Advanced OFDM receivers for underwater acoustic communications[D]. [Ph. D. dissertation], University of York, 2016.
    [2]
    HAN Jing, ZHANG Lingling, ZHANG Qunfei, et al. Low-complexity equalization of orthogonal signal-division multiplexing in doubly-selective channels[J]. IEEE Transactions on Signal Processing, 2019, 67(4): 915–929. doi: 10.1109/TSP.2018.2887191
    [3]
    AMINI P, CHEN Rongrong, and FARHANG-BOROUJENY B. Filterbank multicarrier communications for underwater acoustic channels[J]. IEEE Journal of Oceanic Engineering, 2015, 40(1): 115–130. doi: 10.1109/JOE.2013.2291139
    [4]
    王彪, 方涛, 戴跃伟. 时间反转滤波器组多载波水声通信方法[J]. 声学学报, 2020, 45(1): 38–44. doi: 10.15949/j.cnki.0371-0025.2020.01.004

    WANG Biao, FANG Tao, and DAI Yuewei. Method of time reversal filter bank multicarrier underwater acoustic communication[J]. Acta Acustica, 2020, 45(1): 38–44. doi: 10.15949/j.cnki.0371-0025.2020.01.004
    [5]
    BAŞAR E, AYGÖLÜ Ü, PANAYIRCI E, et al. Orthogonal frequency division multiplexing with index modulation[J]. IEEE Transactions on Signal Processing, 2013, 61(22): 5536–5549. doi: 10.1109/TSP.2013.2279771
    [6]
    WEN Miaowen, CHENG Xiang, YANG Liuqing, et al. Index modulated OFDM for underwater acoustic communications[J]. IEEE Communications Magazine, 2016, 54(5): 132–137. doi: 10.1109/MCOM.2016.7470947
    [7]
    ABU-ALHIGA R and HAAS H. Subcarrier-index modulation OFDM[C]. The 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 2009: 177–181.
    [8]
    ZHANG Jian, ZHAO Minjian, ZHONG Jie, et al. Optimised index modulation for filter bank multicarrier system[J]. IET Communications, 2017, 11(4): 459–467. doi: 10.1049/iet-com.2016.0564
    [9]
    郭立民, 寇韵涵, 陈涛, 等. 基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别[J]. 电子与信息学报, 2018, 40(4): 875–881. doi: 10.11999/JEIT170588

    GUO Limin, KOU Yunhan, CHEN Tao, et al. Low probability of intercept radar signal recognition based on stacked sparse auto-encoder[J]. Journal of Electronics &Information Technology, 2018, 40(4): 875–881. doi: 10.11999/JEIT170588
    [10]
    YE Hao, LIANG Le, LI G Y, et al. Deep learning-based end-to-end wireless communication systems with conditional GANs as unknown channels[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3133–3143. doi: 10.1109/TWC.2020.2970707
    [11]
    ZHU Yunan, WANG Biao, ZHANG Youwen, et al. Convolutional neural network based filter bank multicarrier system for underwater acoustic communications[J]. Applied Acoustics, 2021, 177: 107920. doi: 10.1016/j.apacoust.2021.107920
    [12]
    GAO Xuanxuan, JIN Shi, WEN Chaokai, et al. ComNet: Combination of deep learning and expert knowledge in OFDM receivers[J]. IEEE Communications Letters, 2018, 22(12): 2627–2630. doi: 10.1109/LCOMM.2018.2877965
    [13]
    陈友淦, 许肖梅. 人工智能技术在水声通信中的研究进展[J]. 哈尔滨工程大学学报, 2020, 41(10): 1536–1544. doi: 10.11990/jheu.202007110

    CHEN Yougan and XU Xiaomei. Research progress in artificial intelligence technology for underwater acoustic communications[J]. Journal of Harbin Engineering University, 2020, 41(10): 1536–1544. doi: 10.11990/jheu.202007110
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (1074) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return