Citation: | LI Songtao, LI Weigang, GAN Pin, JIANG Lin. Multi-constrained Non-negative Matrix Factorization Algorithm Based on Sinkhorn Distance Feature Scaling[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4384-4394. doi: 10.11999/JEIT210946 |
[1] |
钱智明, 钟平, 王润生. 基于图正则化与非负组稀疏的自动图像标注[J]. 电子与信息学报, 2015, 37(4): 784–790. doi: 10.11999/JEIT141282
QIAN Zhiming, ZHONG Ping, and WANG Runsheng. Automatic image annotation via graph regularization and non-negative group sparsity[J]. Journal of Electronics &Information Technology, 2015, 37(4): 784–790. doi: 10.11999/JEIT141282
|
[2] |
刘正, 张国印, 陈志远. 基于特征加权和非负矩阵分解的多视角聚类算法[J]. 电子学报, 2016, 44(3): 535–540. doi: 10.3969/j.issn.0372-2112.2016.03.006
LIU Zheng, ZHANG Guoyin, and CHEN Zhiyuan. A Multiview clustering algorithm based on feature weighting and non-negative matrix factorization[J]. Acta Electronica Sinica, 2016, 44(3): 535–540. doi: 10.3969/j.issn.0372-2112.2016.03.006
|
[3] |
马源培, 杨卓璇, 李慧嘉. 结合Bass模型和LTV的创新产品扩散预测[J]. 聊城大学学报:自然科学版, 2020, 33(4): 26–32.
MA Peiyuan, YANG Zhuoxuan, and LI Huijia. Innovative product diffusion forecasting combined bass model and LTV[J]. Journal of Liaocheng University:Natural Science Edition, 2020, 33(4): 26–32.
|
[4] |
JIA Yuheng, KWONG S, HOU Junhui, et al. Semi-supervised non-negative matrix factorization with dissimilarity and similarity regularization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(7): 2510–2521.
|
[5] |
邱飞岳, 陈博文, 陈铁明, 等. 稀疏诱导流形正则化凸非负矩阵分解算法[J]. 通信学报, 2020, 41(5): 84–95. doi: 10.11959/j.issn.1000-436x.2020064
QIU Feiyue, CHEN Bowen, CHEN Tieming, et al. Sparsity induced convex nonnegative matrix factorization algorithm with manifold regularization[J]. Journal on Communications, 2020, 41(5): 84–95. doi: 10.11959/j.issn.1000-436x.2020064
|
[6] |
陈善学, 刘荣华. 基于子空间结构正则化的L21非负矩阵分解高光谱解混[J]. 电子与信息学报, 2022, 44(5): 1704–1713. doi: 10.11999/JEIT210232
CHEN Shanxue and LIU Ronghua. L21 Nonnegative matrix factorization based on subspace structure regularization for hyperspectral unmixing[J]. Journal of Electronics &Information Technology, 2022, 44(5): 1704–1713. doi: 10.11999/JEIT210232
|
[7] |
CHEN Wensheng, LIU Jingmin, PAN Binbin, et al. Face recognition using nonnegative matrix factorization with fractional power inner product kernel[J]. Neurocomputing, 2019, 348: 40–53. doi: 10.1016/j.neucom.2018.06.083
|
[8] |
YANG Zhen, CHEN Weitong, and HUANG Jian. Enhancing recommendation on extremely sparse data with blocks-coupled non-negative matrix factorization[J]. Neurocomputing, 2018, 278: 126–133. doi: 10.1016/j.neucom.2017.04.080
|
[9] |
SHIRDHONKAR S and JACOBS D W. Approximate earth mover’s distance in linear time[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8.
|
[10] |
CAI Deng, HE Xiaofei, HAN Jiawei, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1548–1560. doi: 10.1109/TPAMI.2010.231
|
[11] |
QIAN Wei, HONG Bin, CAI Deng, et al. Non-negative matrix factorization with Sinkhorn distance[C]. The 25th International Joint Conference on Artificial Intelligence, New York, USA, 2016: 1960–1966.
|
[12] |
HOYER P O. Non-negative matrix factorization with sparseness constraints[J]. Journal of Machine Learning Research, 2004, 5(9): 1457–1469.
|
[13] |
LIU Haifeng, WU Zhaohui, LI Xuelong, et al. Constrained nonnegative matrix factorization for image representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1299–1311. doi: 10.1109/TPAMI.2011.217
|
[14] |
LI Dong, ZHANG Baoxian, YAO Zheng, et al. A feature scaling based k-nearest neighbor algorithm for indoor positioning system[C]. 2014 IEEE Global Communications Conference, Austin, USA, 2014: 436–441.
|
[15] |
JIMÉNEZ-CORDERO A and MALDONADO S. Automatic feature scaling and selection for support vector machine classification with functional data[J]. Applied Intelligence, 2021, 51(1): 161–184.
|
[16] |
RUBNER Y, TOMASI C, and GUIBAS L J. The earth mover’s distance as a metric for image retrieval[J]. International Journal of Computer Vision, 2000, 40(2): 99–121. doi: 10.1023/A:1026543900054
|
[17] |
CUTURI M. Sinkhorn distances: Lightspeed computation of optimal transport[C]. The 26th International Conference on Neural Information Processing Systems, Lake Tahoe, Spain, 2013: 2292–2300.
|
[18] |
FROGNER C, ZHANG Chiyuan, MOBAHI H, et al. Learning with a Wasserstein loss[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 2053–2061.
|
[19] |
HUANG Shudong, WANG Hongjun, LI Tao, et al. Robust graph regularized nonnegative matrix factorization for clustering[J]. Data Mining and Knowledge Discovery, 2018, 32(2): 483–503. doi: 10.1007/s10618-017-0543-9
|
[20] |
XU Zongben, CHANG Xiangyu, XU Fengmin, et al. L1/2 regularization: A thresholding representation theory and a fast solver[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7): 1013–1027. doi: 10.1109/TNNLS.2012.2197412
|
[21] |
LEE D D and SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788–791. doi: 10.1038/44565
|
[22] |
ZHANG Yunmeng, SHU Zhenqiu, ZHANG Jie, et al. Dual Graph regularized NMF with Sinkhorn Distance[C]. The 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science, Xuzhou, China, 2020: 146–149.
|
[23] |
MENG Yang, SHANG Ronghua, JIAO Licheng, et al. Dual-graph regularized non-negative matrix factorization with sparse and orthogonal constraints[J]. Engineering Applications of Artificial Intelligence, 2018, 69: 24–35. doi: 10.1016/j.engappai.2017.11.008
|
[24] |
ZHANG Lin, LIU Zhonghua, PU Jiexin, et al. Adaptive graph regularized nonnegative matrix factorization for data representation[J]. Applied Intelligence, 2020, 50(2): 438–447. doi: 10.1007/s10489-019-01539-9
|
[25] |
CHOI S. Algorithms for orthogonal nonnegative matrix factorization[C]. Proceedings of 2008 IEEE International Joint Conference on Neural Networks, Hong Kong, China, 2008: 1828–1832.
|
[26] |
WU Wenhui, KWONG S, HOU Junhui, et al. Simultaneous dimensionality reduction and classification via dual embedding regularized nonnegative matrix factorization[J]. IEEE Transactions on Image Processing, 2019, 28(8): 3836–3847. doi: 10.1109/TIP.2019.2907054
|
[27] |
LIANG Naiyao, YANG Zuyuan, LI Zhenni, et al. Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints[J]. Knowledge-Based Systems, 2020, 194: 105582. doi: 10.1016/j.knosys.2020.105582
|
[28] |
QIU Xiru, CHEN Zhikui, ZHAO Liang, et al. Unsupervised multi-view non-negative for law data feature learning with dual graph-regularization in smart Internet of Things[J]. Future Generation Computer Systems, 2019, 100: 523–530. doi: 10.1016/j.future.2019.05.055
|