Advanced Search
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
WANG Wentao, HUANG Jialu. Research on Passive Millimeter-wave Stealth Technology Based on Active Cancellation for Armored Target[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4178-4184. doi: 10.11999/JEIT210944
Citation: WANG Wentao, HUANG Jialu. Research on Passive Millimeter-wave Stealth Technology Based on Active Cancellation for Armored Target[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4178-4184. doi: 10.11999/JEIT210944

Research on Passive Millimeter-wave Stealth Technology Based on Active Cancellation for Armored Target

doi: 10.11999/JEIT210944
  • Received Date: 2021-09-06
  • Rev Recd Date: 2022-05-23
  • Available Online: 2022-05-31
  • Publish Date: 2022-12-16
  • Armored target is currently great threatened by passive millimeter wave detection and guidance technology. An active cancellation millimeter-wave stealth method is proposed for enhancing the survivability of armored target in the future battlefield. By means of the low power noise from the millimeter wave jammer on armored target, the radiation temperature difference between target and background in practice is reduced. And then, the millimeter-wave radiometer in terminal-sensitive projectile could not detect and identify armored target so as to realize its passive stealth function. Compared to the traditional passive stealth methods based on shape and material, the proposed method can not only protect various types of targets under different backgrounds in action, but also has the advantages of strong mobility and simple engineering implementation. Finally, the experimental results demonstrate stealthy capability of armored target to Ka-band and W-band terminal-sensitive projectile radiometers above its 90° three-dimensional space can achieve –20~–8 dB and –15~–8 dB respectively, which it is also improved compared with the passive stealth methods.
  • loading
  • [1]
    ZHANG Hang, FENG Pengpeng, and YIN Ximei. Design of a servo attitude measuring device for an anti-terminal sensitive projectile weapon system[C]. IEEE 17th International Conference on Communication Technology, Chengdu, China, 2017: 1852–1855.
    [2]
    杨杰, 张琪, 贺元吉, 等. 间断采样导致末敏弹大范围扫描盲区的消减对策[J]. 兵工学报, 2021, 42(7): 1353–1362. doi: 10.3969/j.issn.1000-1093.2021.07.002

    YANG Jie, ZHANG Qi, HE Yuanji, et al. Countermeasure to reduce the large scanning blind area of terminal sensitive projectile caused by interval sampling[J]. Acta Armamentarii, 2021, 42(7): 1353–1362. doi: 10.3969/j.issn.1000-1093.2021.07.002
    [3]
    姜云, 郭锐, 刘荣忠, 等. 末敏弹线阵列激光雷达的距离像分割方法[J]. 红外与激光工程, 2020, 49(1): 0126002. doi: 10.3788/IRLA202049.0126002

    JIANG Yun, GUO Rui, LIU Rongzhong, et al. Distance image segmentation method for terminal sensitive missile linear array laser radar[J]. Infrared and Laser Engineering, 2020, 49(1): 0126002. doi: 10.3788/IRLA202049.0126002
    [4]
    丁勇, 肖泽龙, 许建中, 等. 毫米波交流辐射计半实物仿真系统设计[J]. 兵工学报, 2015, 36(10): 1867–1874. doi: 10.3969/j.issn.1000-1093.2015.10.007

    DING Yong, XIAO Zelong, XU Jianzhong, et al. Design of millimeter wave radiometer hardware-in-the-loop simulation system[J]. Acta Armamentarii, 2015, 36(10): 1867–1874. doi: 10.3969/j.issn.1000-1093.2015.10.007
    [5]
    殷希梅, 冯鹏鹏. 末敏弹对抗技术现状及展望[J]. 探测与控制学报, 2017, 39(5): 1–6.

    YIN Ximei and FENG Pengpeng. Status and prospect of terminal sensitive projectile technology[J]. Journal of Detection &Control, 2017, 39(5): 1–6.
    [6]
    李金梁, 王雪松, 李永祯, 等. 弹道中段无源轻诱饵的动力学特性分析[J]. 宇航学报, 2009, 30(6): 2127–2134. doi: 10.3873/j.issn.1000-1328.2009.06.013

    LI Jinliang, WANG Xuesong, LI Yongzhen, et al. Dynamics characteristics of light jamming in the midcourse of trajectory[J]. Journal of Astronautics, 2009, 30(6): 2127–2134. doi: 10.3873/j.issn.1000-1328.2009.06.013
    [7]
    ZHOU Weiguang, LUO Jirun, JIA Yugui, et al. Performance evaluation of radar and decoy system counteracting antiradiation missile[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 2026–2036. doi: 10.1109/TAES.2011.5937280
    [8]
    陈曦, 陈自力, 许建中, 等. 基于波形诱骗的末敏弹毫米波有源干扰研究[J]. 兵工学报, 2014, 35(1): 49–54. doi: 10.3969/j.issn.1000-1093.2014.01.007

    CHEN Xi, CHEN Zili, XU Jianzhong, et al. Study of millimeter-wave active jamming based on waveform deception for terminal-sensitive projectiles[J]. Acta Armamentarii, 2014, 35(1): 49–54. doi: 10.3969/j.issn.1000-1093.2014.01.007
    [9]
    缪晨, 娄国伟, 李兴国. 3mm涂层隐身材料的天线温度模型[J]. 红外与毫米波学报, 2004, 23(3): 221–224. doi: 10.3321/j.issn:1001-9014.2004.03.016

    MIAO Chen, LOU Guowei, and LI Xingguo. Antenna temperature model of 3mm coating stealth material[J]. Journal of Infrared and Millimeter Waves, 2004, 23(3): 221–224. doi: 10.3321/j.issn:1001-9014.2004.03.016
    [10]
    聂建英, 李兴国, 娄国伟. 毫米波隐身材料主要参数的计算及误差分析[J]. 兵工学报, 2004, 25(6): 734–737. doi: 10.3321/j.issn:1000-1093.2004.06.018

    NIE Jianying, LI Xingguo, and LOU Guowei. Calculation and error analysis for the parameters of millimeter-wave absorbers[J]. Acta Armamentarii, 2004, 25(6): 734–737. doi: 10.3321/j.issn:1000-1093.2004.06.018
    [11]
    马若飞, 秦江. 末敏弹被动特性的干扰技术研究[J]. 甘肃科技, 2014, 30(6): 43–46,64. doi: 10.3969/j.issn.1000-0952.2014.06.017

    MA Ruofei and QIN Jiang. Research on jamming technology for the passive characteristic of terminal sensitive projectile[J]. Gansu Science and Technology, 2014, 30(6): 43–46,64. doi: 10.3969/j.issn.1000-0952.2014.06.017
    [12]
    郭明伟, 温云鹏, 仪名星. 高功率微波对抗末敏弹可行性分析[J]. 电子信息对抗技术, 2019, 34(1): 27–30,55. doi: 10.3969/j.issn.1674-2230.2019.01.007

    GUO Mingwei, WEN Yunpeng, and YI Mingxing. The feasibility analysis of terminal sensitive projectile countermeasure using high power microwave[J]. Electronic Information Warfare Technology, 2019, 34(1): 27–30,55. doi: 10.3969/j.issn.1674-2230.2019.01.007
    [13]
    谢文, 叶志红, 丁忠熙. 末敏弹射击效能分析[J]. 火力与指挥控制, 2021, 46(7): 62–65. doi: 10.3969/j.issn.1002-0640.2021.07.012

    XIE Wen, YE Zhihong, and DING Zhongxi. Analysis of firing efficiency for terminal sensitive projectile[J]. Fire Control &Command Control, 2021, 46(7): 62–65. doi: 10.3969/j.issn.1002-0640.2021.07.012
    [14]
    张生康. 毫米波辐射计前端研究[D]. [硕士论文], 电子科技大学, 2020.

    ZHANG Shengkang. Research on front ends of millimeter wave radiometers[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020.
    [15]
    尚庆龙. 末敏弹毫米波探测器的干扰等效评估模型研究[D]. [博士论文], 南京理工大学, 2019.

    SHANG Qinglong. The jamming effect equivalent evaluation model for the millimeter wave detector of terminal-sensitive projectile[D]. [Ph. D. dissertation], Nanjing University of Science & Technology, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (672) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return