Advanced Search
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
YANG Jing, LI Bin, LI Shaobo, WANG Qi, YU Liya, HU Jianjun, YUAN Kun. Brain-inspired Continuous Learning: Technology, Application and Future[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1865-1878. doi: 10.11999/JEIT210932
Citation: YANG Jing, LI Bin, LI Shaobo, WANG Qi, YU Liya, HU Jianjun, YUAN Kun. Brain-inspired Continuous Learning: Technology, Application and Future[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1865-1878. doi: 10.11999/JEIT210932

Brain-inspired Continuous Learning: Technology, Application and Future

doi: 10.11999/JEIT210932
Funds:  The National Key R&D Program of China(2018AAA010804), The National Natural Science Foundation of China (61863005,62162008, 62166005), The Joint Open Fund Project of Key Laboratories of the Ministry of Education ([2020]245)
  • Received Date: 2021-09-02
  • Accepted Date: 2021-11-23
  • Rev Recd Date: 2021-11-19
  • Available Online: 2021-11-25
  • Publish Date: 2022-05-25
  • Deep learning model facing the non-independent and identically distributed data streams, the old knowledge will be covered by new knowledge, resulting in a significant performance degradation of model. Continuous Learning(CL) can acquire incremental available knowledge from non-independent and identically distributed data streams, continuously accumulate new knowledge without learning from scratch, and achieve human intelligence by imitating brain learning and memory mechanisms. In this paper, the brain-inspired continuous learning methods are reviewed. Firstly, the history of continuous learning is reviewed. Secondly, from the perspective of brain continuous learning mechanism, the research methods of continuous learning are divided into general methods and brain-inspired methods .The current research status of replay, regularization and sparsity, which are commonly used as the methods of continuous learning, are summarized, and their difficulties are analyzed under the existing technical conditions. To this end, four types of brain-inspired methods: synaptic, dual system, sleep and modularization, which are closer to the ability of brain continuous learning, are meticulously analyzed and compared . Finally, the application status of brain-inspire continuous learning are summarized, and the challenges and development of brain-inspire continuous learning under the existing technical conditions are discussed.
  • loading
  • [1]
    LIU Yinhan, GU Jiatao, GOYAL N, et al. Multilingual denoising pre-training for neural machine translation[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 726–742. doi: 10.1162/tacl_a_00343
    [2]
    KHAN N S, ABID A, and ABID K. A novel Natural Language Processing (NLP)-based machine translation model for English to Pakistan sign language translation[J]. Cognitive Computation, 2020, 12(4): 748–765. doi: 10.1007/s12559-020-09731-7
    [3]
    ZHOU Long, ZHANG Jiajun, and ZONG Chengqing. Synchronous bidirectional neural machine translation[J]. Transactions of the Association for Computational Linguistics, 2019, 7: 91–105. doi: 10.1162/tacl_a_00256
    [4]
    LI Lin, GOH T T, and JIN Dawei. How textual quality of online reviews affect classification performance: A case of deep learning sentiment analysis[J]. Neural Computing and Applications, 2020, 32(9): 4387–4415. doi: 10.1007/s00521-018-3865-7
    [5]
    PORIA S, CAMBRIA E, HOWARD N, et al. Fusing audio, visual and textual clues for sentiment analysis from multimodal content[J]. Neurocomputing, 2016, 174: 50–59. doi: 10.1016/j.neucom.2015.01.095
    [6]
    孙晓, 彭晓琪, 胡敏, 等. 基于多维扩展特征与深度学习的微博短文本情感分析[J]. 电子与信息学报, 2017, 39(9): 2048–2055. doi: 10.11999/JEIT160975

    SUN Xiao, PENG Xiaoqi, HU Min, et al. Extended multi-modality features and deep learning based microblog short text sentiment analysis[J]. Journal of Electronics &Information Technology, 2017, 39(9): 2048–2055. doi: 10.11999/JEIT160975
    [7]
    YANG Jing, LI Shaobo, WANG Zheng, et al. Using deep learning to detect defects in manufacturing: A comprehensive survey and current challenges[J]. Materials, 2020, 13(24): 5755. doi: 10.3390/ma13245755
    [8]
    JIANG Fengling, KONG Bin, LI Jingpeng, et al. Robust visual saliency optimization based on bidirectional Markov chains[J]. Cognitive Computation, 2021, 13(1): 69–80. doi: 10.1007/s12559-020-09724-6
    [9]
    周治国, 荆朝, 王秋伶, 等. 基于时空信息融合的无人艇水面目标检测跟踪[J]. 电子与信息学报, 2021, 43(6): 1698–1705. doi: 10.11999/JEIT200223

    ZHOU Zhiguo, JING Zhao, WANG Qiuling, et al. Object detection and tracking of unmanned surface vehicles based on spatial-temporal information fusion[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1698–1705. doi: 10.11999/JEIT200223
    [10]
    SHIH H C, CHENG H Y, and FU J C. Image classification using synchronized rotation local ternary pattern[J]. IEEE Sensors Journal, 2020, 20(3): 1656–1663. doi: 10.1109/JSEN.2019.2947994
    [11]
    ZHANG Lei, ZHAO Yao, and ZHU Zhenfeng. Extracting shared subspace incrementally for multi-label image classification[J]. The Visual Computer, 2014, 30(12): 1359–1371. doi: 10.1007/s00371-013-0891-4
    [12]
    WANG Qi, LIU Xinchen, LIU Wu, et al. MetaSearch: Incremental product search via deep meta-learning[J]. IEEE Transactions on Image Processing, 2020, 29: 7549–7564. doi: 10.1109/TIP.2020.3004249
    [13]
    DELANGE M, ALJUNDI R, MASANA M, et al. A continual learning survey: Defying forgetting in classification tasks[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://ieeexplore.ieee.org/document/9349197, 2021.
    [14]
    HASSELMO M E. Avoiding catastrophic forgetting[J]. Trends in Cognitive Sciences, 2017, 21(6): 407–408. doi: 10.1016/j.tics.2017.04.001
    [15]
    莫建文, 陈瑶嘉. 基于分类特征约束变分伪样本生成器的类增量学习[J]. 控制与决策, 2021, 36(10): 2475–2482. doi: 10.13195/j.kzyjc.2020.0228

    MO Jianwen and CHEN Yaojia. Class incremental learning based on variational pseudo-sample generator with classification feature constraints[J]. Control and Decision, 2021, 36(10): 2475–2482. doi: 10.13195/j.kzyjc.2020.0228
    [16]
    MERMILLOD M, BUGAISKA A, and BONIN P. The stability-plasticity dilemma: Investigating the continuum from catastrophic forgetting to age-limited learning effects[J]. Frontiers in Psychology, 2013, 4: 504. doi: 10.3389/fpsyg.2013.00504
    [17]
    LESORT T, LOMONACO V, STOIAN A, et al. Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges[J]. Information Fusion, 2020, 58: 52–68. doi: 10.1016/j.inffus.2019.12.004
    [18]
    HADSELL R, RAO D, RUSU A A, et al. Embracing change: Continual learning in deep neural networks[J]. Trends in Cognitive Sciences, 2020, 24(12): 1028–1040. doi: 10.1016/j.tics.2020.09.004
    [19]
    PARISI G I, KEMKER R, PART J L, et al. Continual lifelong learning with neural networks: A review[J]. Neural Networks, 2019, 113: 54–71. doi: 10.1016/j.neunet.2019.01.012
    [20]
    ZENKE F, POOLE B, and GANGULI S. Continual learning through synaptic intelligence[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 3987–3995.
    [21]
    KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521–3526. doi: 10.1073/pnas.1611835114
    [22]
    SHIN H, LEE J K, KIM J, et al. Continual learning with deep generative replay[C]. The 31st International Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, USA, 2017: 2994–3003.
    [23]
    GONZÁLEZ O C, SOKOLOV Y, KRISHNAN G P, et al. Can sleep protect memories from catastrophic forgetting?[J]. eLife, 2020, 9: e51005. doi: 10.7554/eLife.51005
    [24]
    KRISHNAN G P, TADROS T, RAMYAA R, et al. Biologically inspired sleep algorithm for artificial neural networks[J/OL]. https://arxiv.org/abs/1908.02240, 2019.
    [25]
    FLESCH T, BALAGUER J, DEKKER R, et al. Comparing continual task learning in minds and machines[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(44): e10313–e10322. doi: 10.1073/pnas.1800755115
    [26]
    MCCLOSKEY M and COHEN N J. Catastrophic interference in connectionist networks: The sequential learning problem[J]. Psychology of Learning and Motivation, 1989, 24: 109–165.
    [27]
    BAE H, SONG S, and PARK J. The present and future of continual learning[C]. 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea (South), 2020: 1193–1195.
    [28]
    THRUN S. A lifelong learning perspective for mobile robot control[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94), Munich, Germany, 1994: 23–30.
    [29]
    ELLEFSEN K O, MOURET J B, and CLUNE J B. Neural modularity helps organisms evolve to learn new skills without forgetting old skills[J]. PLoS Computational Biology, 2015, 11(4): e1004128. doi: 10.1371/journal.pcbi.1004128
    [30]
    LI Zhizhong and HOIEM D. Learning without forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2935–2947. doi: 10.1109/TPAMI.2017.2773081
    [31]
    LOMONACO V and MALTONI D. Core50: A new dataset and benchmark for continuous object recognition[C]. The 1st Annual Conference on Robot Learning (CoRL 2017), Mountain View, USA, 2017: 17–26.
    [32]
    REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: Incremental classifier and representation learning[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5533–5542.
    [33]
    PARISI G I, TANI J, WEBER C, et al. Lifelong learning of spatiotemporal representations with dual-memory recurrent self-organization[J]. Frontiers in Neurorobotics, 2018, 12: 78. doi: 10.3389/fnbot.2018.00078
    [34]
    FARQUHAR S and GAL Y. Towards robust evaluations of continual learning[J/OL]. https://arxiv.org/abs/1805.09733, 2018.
    [35]
    BAWEJA C, GLOCKER B, and KAMNITSAS K. Towards continual learning in medical imaging[J/OL]. https://arxiv.org/abs/1811.02496, 2018.
    [36]
    VAN DE VEN G M and TOLIAS A S. Three scenarios for continual learning[J/OL]. https://arxiv.org/abs/1904.07734, 2019.
    [37]
    VAN DE VEN G M, SIEGELMANN H T, and TOLIAS A S. Brain-inspired replay for continual learning with artificial neural networks[J]. Nature Communications, 2020, 11(1): 4069. doi: 10.1038/s41467-020-17866-2
    [38]
    JAIN S and KASAEI H. 3D_DEN: Open-ended 3D object recognition using dynamically expandable networks[J/OL]. IEEE Transactions on Cognitive and Developmental Systems. https://ieeexplore.ieee.org/document/9410594, 2021.
    [39]
    WEN Shixian, RIOS A, GE Yunhao, et al. Beneficial perturbation network for designing general adaptive artificial intelligence systems[J/OL]. IEEE Transactions on Neural Networks and Learning Systems. https://ieeexplore.ieee.org/document/9356334, 2021.
    [40]
    CASTRO F M, MARÍN-JIMÉNEZ M J, GUIL N, et al. End-to-end incremental learning[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 241–257.
    [41]
    SHIEH J L, UL HAQ Q M, HAQ M A, et al. Continual learning strategy in one-stage object detection framework based on experience replay for autonomous driving vehicle[J]. Sensors, 2020, 20(23): 6777. doi: 10.3390/s20236777
    [42]
    BRAHMA P P and OTHON A. Subset replay based continual learning for scalable improvement of autonomous systems[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, USA, 2018: 1179–1798.
    [43]
    WU Yue, CHEN Yinpeng, WANG Lijuan, et al. Incremental classifier learning with generative adversarial networks[J/OL]. https://arxiv.org/abs/1802.00853, 2018.
    [44]
    OSTAPENKO O, PUSCAS M, KLEIN T, et al. Learning to remember: A synaptic plasticity driven framework for continual learning[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 11313–11321.
    [45]
    WU Chenshen, HERRANZ L, LIU Xialei, et al. Memory replay GANs: Learning to generate images from new categories without forgetting[C]. The 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 5966–5976.
    [46]
    LAO Qicheng, JIANG Xiang, HAVAEI M, et al. A two-stream continual learning system with variational domain-agnostic feature replay[J/OL]. IEEE Transactions on Neural Networks and Learning Systems. https://ieeexplore.ieee.org/document/9368260, 2021.
    [47]
    JUNG S, AHN H, CHA S, et al. Adaptive group sparse regularization for continual learning[J/OL]. https://arxiv.org/abs/2003.13726, 2020.
    [48]
    POMPONI J, SCARDAPANE S, LOMONACO V, et al. Efficient continual learning in neural networks with embedding regularization[J]. Neurocomputing, 2020, 397: 139–148. doi: 10.1016/j.neucom.2020.01.093
    [49]
    MALTONI D and LOMONACO V. Continuous learning in single-incremental-task scenarios[J]. Neural Networks, 2019, 116: 56–73. doi: 10.1016/j.neunet.2019.03.010
    [50]
    PARSHOTAM K and KILICKAYA M. Continual learning of object instances[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, USA, 2020: 907–914.
    [51]
    MASARCZYK W and TAUTKUTE I. Reducing catastrophic forgetting with learning on synthetic data[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, USA, 2020: 1019–1024.
    [52]
    WIXTED J T. The psychology and neuroscience of forgetting[J]. Annual Review of Psychology, 2004, 55: 235–269. doi: 10.1146/annurev.psych.55.090902.141555
    [53]
    WANG Zifeng, JIAN Tong, CHOWDHURY K, et al. Learn-prune-share for lifelong learning[C]. 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 2020: 641–650.
    [54]
    GOLKAR S, KAGAN M, and CHO K. Continual learning via neural pruning[J/OL]. https://arxiv.org/abs/1903.04476, 2019.
    [55]
    YOON J, YANG E, LEE J, et al. Lifelong learning with dynamically expandable networks[J/OL]. https://arxiv.org/abs/1708.01547, 2018.
    [56]
    HUMEAU Y and CHOQUET D. The next generation of approaches to investigate the link between synaptic plasticity and learning[J]. Nature Neuroscience, 2019, 22(10): 1536–1543. doi: 10.1038/s41593-019-0480-6
    [57]
    BENNA M K and FUSI S. Computational principles of synaptic memory consolidation[J]. Nature Neuroscience, 2016, 19(12): 1697–1706. doi: 10.1038/nn.4401
    [58]
    REDONDO R L and MORRIS R G M. Making memories last: The synaptic tagging and capture hypothesis[J]. Nature Reviews Neuroscience, 2011, 12(1): 17–30. doi: 10.1038/nrn2963
    [59]
    FUSI S, DREW P J, and ABBOTT L F. Cascade models of synaptically stored memories[J]. Neuron, 2005, 45(4): 599–611. doi: 10.1016/j.neuron.2005.02.001
    [60]
    ALJUNDI R, BABILONI F, ELHOSEINY M, et al. Memory aware synapses: Learning what (not) to forget[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 144–161.
    [61]
    SUKHOV S, LEONTEV M, MIHEEV A, et al. Prevention of catastrophic interference and imposing active forgetting with generative methods[J]. Neurocomputing, 2020, 400: 73–85. doi: 10.1016/j.neucom.2020.03.024
    [62]
    KRAUSE J, STARK M, DENG Jia, et al. 3D object representations for fine-grained categorization[C]. 2013 IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 2013: 554–561.
    [63]
    MCCLELLAND J L, MCNAUGHTON B L, and O'REILLY R C. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory[J]. Psychological Review, 1995, 102(3): 419–457. doi: 10.1037/0033-295x.102.3.419
    [64]
    KUMARAN D, HASSABIS D, and MCCLELLAND J L. What learning systems do intelligent agents need? Complementary learning systems theory updated[J]. Trends in Cognitive Sciences, 2016, 20(7): 512–534. doi: 10.1016/j.tics.2016.05.004
    [65]
    HATTORI M. A biologically inspired dual-network memory model for reduction of catastrophic forgetting[J]. Neurocomputing, 2014, 134: 262–268. doi: 10.1016/j.neucom.2013.08.044
    [66]
    MANDIVARAPU J K, CAMP B, and ESTRADA R. Self-net: Lifelong learning via continual self-modeling[J]. Frontiers in Artificial Intelligence, 2020, 3: 19. doi: 10.3389/frai.2020.00019
    [67]
    DIEKELMANN S and BORN J. The memory function of sleep[J]. Nature Reviews Neuroscience, 2010, 11(2): 114–126. doi: 10.1038/nrn2762
    [68]
    FELDMAN D E. Synaptic mechanisms for plasticity in neocortex[J]. Annual Review of Neuroscience, 2009, 32: 33–55. doi: 10.1146/annurev.neuro.051508.135516
    [69]
    TONONI G and CIRELLI C. Sleep and synaptic homeostasis: A hypothesis[J]. Brain Research Bulletin, 2003, 62(2): 143–150. doi: 10.1016/j.brainresbull.2003.09.004
    [70]
    WEI Yi'na, KRISHNAN G P, KOMAROV M, et al. Differential roles of sleep spindles and sleep slow oscillations in memory consolidation[J]. PLoS Computational Biology, 2018, 14(7): e1006322. doi: 10.1371/journal.pcbi.1006322
    [71]
    STICKGOLD R. Parsing the role of sleep in memory processing[J]. Current Opinion in Neurobiology, 2013, 23(5): 847–853. doi: 10.1016/j.conb.2013.04.002
    [72]
    KEMKER R and KANAN C. FearNet: Brain-inspired model for incremental learning[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
    [73]
    HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8): 2554–2558. doi: 10.1201/9780429500459-2
    [74]
    FACHECHI A, AGLIARI E, and BARRA A. Dreaming neural networks: Forgetting spurious memories and reinforcing pure ones[J]. Neural Networks, 2019, 112: 24–40. doi: 10.1016/j.neunet.2019.01.006
    [75]
    HINTZE A and ADAMI C. Evolution of complex modular biological networks[J]. PLoS Computational Biology, 2008, 4(2): e23. doi: 10.1371/journal.pcbi.004
    [76]
    ESPINOSA-SOTO C and WAGNER A. Specialization can drive the evolution of modularity[J]. PLoS Computational Biology, 2010, 6(3): e1000719. doi: 10.1371/journal.pcbi.1000719
    [77]
    VERBANCSICS P and STANLEY K O. Constraining connectivity to encourage modularity in HyperNEAT[C]. The 13th Annual Conference on Genetic and Evolutionary Computation (GECCO), Dublin, Ireland, 2011: 1483–1490.
    [78]
    VELEZ R and CLUNE J. Diffusion-based neuromodulation can eliminate catastrophic forgetting in simple neural networks[J]. PLoS One, 2017, 12(11): e0187736. doi: 10.1371/journal.pone.0187736
    [79]
    MAJI S, RAHTU E, KANNALA J, et al. Fine-grained visual classification of aircraft[J/OL]. https://arxiv.org/abs/1306.5151, 2013.
    [80]
    HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 2261–2269.
    [81]
    RANNEN A, ALJUNDI R, BLASCHKO M B, et al. Encoder based lifelong learning[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1329–1337.
    [82]
    LEE S W, KIM J H, JUN J, et al. Overcoming catastrophic forgetting by incremental moment matching[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 4655–4665 .
    [83]
    MASANA M, LIU Xialei, TWARDOWSKI B, et al. Class-incremental learning: Survey and performance evaluation on image classification[J/OL]. https://arxiv.org/abs/2010.15277, 2020.
    [84]
    KAMRANI F, ELERS A, COHEN M, et al. MarioDAgger: A time and space efficient autonomous driver[C]. The 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, USA, 2020: 1491–1498.
    [85]
    MASCHLER B, VIETZ H, JAZDI N, et al. Continual learning of fault prediction for turbofan engines using deep learning with elastic weight consolidation[C]. The 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 2020: 959–966.
    [86]
    KUMAR S, VANKAYALA S K, SAHOO B S, et al. Continual learning-based channel estimation for 5G millimeter-wave systems[C]. The IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, USA, 2021: 1–6.
    [87]
    ATKINSON C, MCCANE B, SZYMANSKI L, et al. Pseudo-rehearsal: Achieving deep reinforcement learning without catastrophic forgetting[J]. Neurocomputing, 2021, 428: 291–307. doi: 10.1016/j.neucom.2020.11.050
    [88]
    KUMAR S, DUTTA S, CHATTURVEDI S, et al. Strategies for Enhancing Training and Privacy in Blockchain Enabled Federated Learning[C]. 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM), New Delhi, India, 2020: 333–340.
    [89]
    CHEN J. Continual learning for addressing optimization problems with a snake-like robot controlled by a self-organizing model[J]. Applied Sciences, 2020, 10(14): 4848. doi: 10.3390/app10144848
    [90]
    XIONG Fangzhou, LIU Zhiyong, HUANG Kaizhu, et al. State primitive learning to overcome catastrophic forgetting in robotics[J]. Cognitive Computation, 2021, 13(2): 394–402. doi: 10.1007/s12559-020-09784-8
    [91]
    LEE S. Accumulating conversational skills using continual learning[C]. 2018 IEEE Spoken Language Technology Workshop (SLT), Athens, Greece, 2018: 862–867.
    [92]
    HAYES T L and KANAN C. Lifelong machine learning with deep streaming linear discriminant analysis[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, USA, 2020: 887–896.
    [93]
    KEMKER R, MCCLURE M, ABITINO A, et al. Measuring catastrophic forgetting in neural networks[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 3390–3398.
    [94]
    BUSHEY D, TONONI G, and CIRELLI C. Sleep and synaptic homeostasis: Structural evidence in Drosophila[J]. Science, 2011, 332(6037): 1576–1581. doi: 10.1126/science.1202839
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (2171) PDF downloads(383) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return