Advanced Search
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
ZHONG Guomin, YU Qile, CHEN Qiang. Weighted Learning Identification Method for Hammerstein Nonlinear Time-varying Systems[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1610-1616. doi: 10.11999/JEIT210857
Citation: ZHONG Guomin, YU Qile, CHEN Qiang. Weighted Learning Identification Method for Hammerstein Nonlinear Time-varying Systems[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1610-1616. doi: 10.11999/JEIT210857

Weighted Learning Identification Method for Hammerstein Nonlinear Time-varying Systems

doi: 10.11999/JEIT210857
Funds:  The National Natural Science Foundation of China (62073291, 62973274)
  • Received Date: 2021-08-19
  • Accepted Date: 2022-01-12
  • Rev Recd Date: 2022-01-07
  • Available Online: 2022-02-02
  • Publish Date: 2022-05-10
  • For Hammerstein nonlinear time-varying systems running repeatedly on finite intervals, a weighted iterative learning algorithm is proposed to estimate the time-varying parameters involved in the system dynamics. The nonlinear input part of the Hammerstein system is tackled based on polynomial expansion, and the iterative learning least square algorithm is given for the time-varying parameter identification. In order to prevent data saturation, an iterative learning least squares algorithm with forgetting factor is proposed for reducing the system tracking error and improving the identification accuracy; A weighted iterative learning least squares algorithm is further presented by introducing the weight matrix. The derivations of the three algorithms are given in detail. The simulation results demonstrate the effectiveness of the proposed learning algorithms, and in comparison with iterative learning least squares algorithm, the modified one sreach high identification accuracy and need fewer iterations.
  • loading
  • [1]
    WANG Dongqing, ZHANG Shuo, GAN Min, et al. A novel EM identification method for hammerstein systems with missing output data[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2500–2508. doi: 10.1109/TII.2019.2931792
    [2]
    CERONE V, RAZZA V, and REGRUTO D. One-shot set-membership identification of Generalized Hammerstein–Wiener systems[J]. Automatica, 2020, 118: 109028. doi: 10.1016/j.automatica.2020.109028
    [3]
    LYU Bensheng, LI Jia, and LI Feng. Neuro-fuzzy based identification of Hammerstein OEAR systems[J]. Computers & Chemical Engineering, 2020, 141: 106984. doi: 10.1016/j.compchemeng.2020.106984
    [4]
    贾立, 李训龙. Hammerstein模型辨识的回顾及展望[J]. 控制理论与应用, 2014, 31(1): 1–10. doi: 10.7641/CTA.2014.30478

    JIA Li and LI Xunlong. Identification of Hammerstein model: Review and prospect[J]. Control Theory &Applications, 2014, 31(1): 1–10. doi: 10.7641/CTA.2014.30478
    [5]
    WESTWICK D and VERHAEGEN M. Identifying MIMO Wiener systems using subspace model identification methods[J]. Signal Processing, 1996, 52(2): 235–258. doi: 10.1016/0165-1684(96)00056-4
    [6]
    LOVERA M, GUSTAFSSON T, and VERHAEGEN M. Recursive subspace identification of linear and non-linear Wiener state-space models[J]. Automatica, 2000, 36(11): 1639–1650. doi: 10.1016/S0005-1098(00)00103-5
    [7]
    JALALEDDINI K and KEARNEY R E. Subspace identification of SISO hammerstein systems: Application to stretch reflex identification[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2725–2734. doi: 10.1109/TBME.2013.2264216
    [8]
    GOETHALS I, PELCKMANS K, SUYKENS J A K, et al. Subspace identification of hammerstein systems using least squares support vector machines[J]. IEEE Transactions on Automatic Control, 2005, 50(10): 1509–1519. doi: 10.1109/TAC.2005.856647
    [9]
    BAI Erwei. An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems[J]. Automatica, 1998, 34(3): 333–338. doi: 10.1016/S0005-1098(97)00198-2
    [10]
    CHANG F H I and LUUS R. A noniterative method for identification using Hammerstein model[J]. IEEE Transactions on Automatic Control, 1971, 16(5): 464–468. doi: 10.1109/TAC.1971.1099787
    [11]
    WANG Dongqing and DING Feng. Least squares based and gradient based iterative identification for Wiener nonlinear systems[J]. Signal Processing, 2011, 91(5): 1182–1189. doi: 10.1016/j.sigpro.2010.11.004
    [12]
    WANG Dongqing, FAN Qiuhua, and MA Yan. An interactive maximum likelihood estimation method for multivariable Hammerstein systems[J]. Journal of the Franklin Institute, 2020, 357(17): 12986–13005. doi: 10.1016/j.jfranklin.2020.09.005
    [13]
    GREBLICKI W and PAWLAK M. The weighted nearest neighbor estimate for Hammerstein system identification[J]. IEEE Transactions on Automatic Control, 2019, 64(4): 1550–1565. doi: 10.1109/TAC.2018.2866463
    [14]
    MZYK G and WACHEL P. Kernel-based identification of Wiener–Hammerstein system[J]. Automatica, 2017, 83: 275–281. doi: 10.1016/j.automatica.2017.06.038
    [15]
    GIORDANO G, GROS S, and SJÖBERG J. An improved method for Wiener-Hammerstein system identification based on the Fractional Approach[J]. Automatica, 2018, 94: 349–360. doi: 10.1016/j.automatica.2018.04.046
    [16]
    SUNG S W. System identification method for Hammerstein processes[J]. Industrial & Engineering Chemistry Research, 2002, 41(17): 4295–4302. doi: 10.1021/ie0109206
    [17]
    JIA Li, LI Xunlong, and CHIU M S. Correlation analysis based MIMO neuro-fuzzy Hammerstein model with noises[J]. Journal of Process Control, 2016, 41: 76–91. doi: 10.1016/j.jprocont.2015.11.006
    [18]
    DING Feng, SHI Yang, and CHEN Tongwen. Gradient-based identification methods for hammerstein nonlinear ARMAX models[J]. Nonlinear Dynamics, 2006, 45(1/2): 31–43. doi: 10.1007/s11071-005-1850-z
    [19]
    REN Biying, XIE Chenxue, SUN Xiangdong, et al. Parameter identification of a lithium-ion battery based on the improved recursive least square algorithm[J]. IET Power Electronics, 2020, 13(12): 2531–2537. doi: 10.1049/iet-pel.2019.1589
    [20]
    ZHANG Bo, TANG Yinggan, and LU Yao. Identification of linear time-varying fractional order systems using block pulse functions based on repetitive principle[J]. ISA Transactions, 2022, 123: 218–229.
    [21]
    孙明轩, 毕宏博. 学习辨识: 最小二乘算法及其重复一致性[J]. 自动化学报, 2012, 38(5): 698–706. doi: 10.3724/SP.J.1004.2012.00698

    SUN Mingxuan and BI Hongbo. Learning identification: Least squares algorithms and their repetitive consistency[J]. Acta Automatica Sinica, 2012, 38(5): 698–706. doi: 10.3724/SP.J.1004.2012.00698
    [22]
    SONG Fazhi, LIU Yang, WANG Xianli, et al. Enhancing accuracy and numerical stability for repetitive time-varying system identification: An iterative learning approach[J]. IEEE Access, 2020, 8: 25679–25690. doi: 10.1109/ACCESS.2020.2966300
    [23]
    LIU Nanjun and ALLEYNE A. Iterative learning identification for linear time-varying systems[J]. IEEE Transactions on Control Systems Technology, 2016, 24(1): 310–317. doi: 10.1109/TCST.2015.2424374
    [24]
    DING Feng, XU Ling, MENG Dandan, et al. Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model[J]. Journal of Computational and Applied Mathematics, 2020, 369: 112575. doi: 10.1016/j.cam.2019.112575
    [25]
    DING Jie, CAO Zhengxin, CHEN Jiazhong, et al. Weighted parameter estimation for hammerstein nonlinear ARX systems[J]. Circuits, Systems, and Signal Processing, 2020, 39(4): 2178–2192. doi: 10.1007/s00034-019-01261-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (515) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return