Citation: | ZHONG Guomin, YU Qile, CHEN Qiang. Weighted Learning Identification Method for Hammerstein Nonlinear Time-varying Systems[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1610-1616. doi: 10.11999/JEIT210857 |
[1] |
WANG Dongqing, ZHANG Shuo, GAN Min, et al. A novel EM identification method for hammerstein systems with missing output data[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2500–2508. doi: 10.1109/TII.2019.2931792
|
[2] |
CERONE V, RAZZA V, and REGRUTO D. One-shot set-membership identification of Generalized Hammerstein–Wiener systems[J]. Automatica, 2020, 118: 109028. doi: 10.1016/j.automatica.2020.109028
|
[3] |
LYU Bensheng, LI Jia, and LI Feng. Neuro-fuzzy based identification of Hammerstein OEAR systems[J]. Computers & Chemical Engineering, 2020, 141: 106984. doi: 10.1016/j.compchemeng.2020.106984
|
[4] |
贾立, 李训龙. Hammerstein模型辨识的回顾及展望[J]. 控制理论与应用, 2014, 31(1): 1–10. doi: 10.7641/CTA.2014.30478
JIA Li and LI Xunlong. Identification of Hammerstein model: Review and prospect[J]. Control Theory &Applications, 2014, 31(1): 1–10. doi: 10.7641/CTA.2014.30478
|
[5] |
WESTWICK D and VERHAEGEN M. Identifying MIMO Wiener systems using subspace model identification methods[J]. Signal Processing, 1996, 52(2): 235–258. doi: 10.1016/0165-1684(96)00056-4
|
[6] |
LOVERA M, GUSTAFSSON T, and VERHAEGEN M. Recursive subspace identification of linear and non-linear Wiener state-space models[J]. Automatica, 2000, 36(11): 1639–1650. doi: 10.1016/S0005-1098(00)00103-5
|
[7] |
JALALEDDINI K and KEARNEY R E. Subspace identification of SISO hammerstein systems: Application to stretch reflex identification[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2725–2734. doi: 10.1109/TBME.2013.2264216
|
[8] |
GOETHALS I, PELCKMANS K, SUYKENS J A K, et al. Subspace identification of hammerstein systems using least squares support vector machines[J]. IEEE Transactions on Automatic Control, 2005, 50(10): 1509–1519. doi: 10.1109/TAC.2005.856647
|
[9] |
BAI Erwei. An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems[J]. Automatica, 1998, 34(3): 333–338. doi: 10.1016/S0005-1098(97)00198-2
|
[10] |
CHANG F H I and LUUS R. A noniterative method for identification using Hammerstein model[J]. IEEE Transactions on Automatic Control, 1971, 16(5): 464–468. doi: 10.1109/TAC.1971.1099787
|
[11] |
WANG Dongqing and DING Feng. Least squares based and gradient based iterative identification for Wiener nonlinear systems[J]. Signal Processing, 2011, 91(5): 1182–1189. doi: 10.1016/j.sigpro.2010.11.004
|
[12] |
WANG Dongqing, FAN Qiuhua, and MA Yan. An interactive maximum likelihood estimation method for multivariable Hammerstein systems[J]. Journal of the Franklin Institute, 2020, 357(17): 12986–13005. doi: 10.1016/j.jfranklin.2020.09.005
|
[13] |
GREBLICKI W and PAWLAK M. The weighted nearest neighbor estimate for Hammerstein system identification[J]. IEEE Transactions on Automatic Control, 2019, 64(4): 1550–1565. doi: 10.1109/TAC.2018.2866463
|
[14] |
MZYK G and WACHEL P. Kernel-based identification of Wiener–Hammerstein system[J]. Automatica, 2017, 83: 275–281. doi: 10.1016/j.automatica.2017.06.038
|
[15] |
GIORDANO G, GROS S, and SJÖBERG J. An improved method for Wiener-Hammerstein system identification based on the Fractional Approach[J]. Automatica, 2018, 94: 349–360. doi: 10.1016/j.automatica.2018.04.046
|
[16] |
SUNG S W. System identification method for Hammerstein processes[J]. Industrial & Engineering Chemistry Research, 2002, 41(17): 4295–4302. doi: 10.1021/ie0109206
|
[17] |
JIA Li, LI Xunlong, and CHIU M S. Correlation analysis based MIMO neuro-fuzzy Hammerstein model with noises[J]. Journal of Process Control, 2016, 41: 76–91. doi: 10.1016/j.jprocont.2015.11.006
|
[18] |
DING Feng, SHI Yang, and CHEN Tongwen. Gradient-based identification methods for hammerstein nonlinear ARMAX models[J]. Nonlinear Dynamics, 2006, 45(1/2): 31–43. doi: 10.1007/s11071-005-1850-z
|
[19] |
REN Biying, XIE Chenxue, SUN Xiangdong, et al. Parameter identification of a lithium-ion battery based on the improved recursive least square algorithm[J]. IET Power Electronics, 2020, 13(12): 2531–2537. doi: 10.1049/iet-pel.2019.1589
|
[20] |
ZHANG Bo, TANG Yinggan, and LU Yao. Identification of linear time-varying fractional order systems using block pulse functions based on repetitive principle[J]. ISA Transactions, 2022, 123: 218–229.
|
[21] |
孙明轩, 毕宏博. 学习辨识: 最小二乘算法及其重复一致性[J]. 自动化学报, 2012, 38(5): 698–706. doi: 10.3724/SP.J.1004.2012.00698
SUN Mingxuan and BI Hongbo. Learning identification: Least squares algorithms and their repetitive consistency[J]. Acta Automatica Sinica, 2012, 38(5): 698–706. doi: 10.3724/SP.J.1004.2012.00698
|
[22] |
SONG Fazhi, LIU Yang, WANG Xianli, et al. Enhancing accuracy and numerical stability for repetitive time-varying system identification: An iterative learning approach[J]. IEEE Access, 2020, 8: 25679–25690. doi: 10.1109/ACCESS.2020.2966300
|
[23] |
LIU Nanjun and ALLEYNE A. Iterative learning identification for linear time-varying systems[J]. IEEE Transactions on Control Systems Technology, 2016, 24(1): 310–317. doi: 10.1109/TCST.2015.2424374
|
[24] |
DING Feng, XU Ling, MENG Dandan, et al. Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model[J]. Journal of Computational and Applied Mathematics, 2020, 369: 112575. doi: 10.1016/j.cam.2019.112575
|
[25] |
DING Jie, CAO Zhengxin, CHEN Jiazhong, et al. Weighted parameter estimation for hammerstein nonlinear ARX systems[J]. Circuits, Systems, and Signal Processing, 2020, 39(4): 2178–2192. doi: 10.1007/s00034-019-01261-4
|