Advanced Search
Volume 44 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
LIU Huanlin, ZHANG Tong, CHEN Yong, PU Xin, HUANG Bingchuan, GONG Xiaonan. QoS-aware Cross-layer Dynamic Resource Allocation for Indoor Visible Light Communication-WiFi Heterogeneous Networks[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3516-3523. doi: 10.11999/JEIT210830
Citation: LIU Huanlin, ZHANG Tong, CHEN Yong, PU Xin, HUANG Bingchuan, GONG Xiaonan. QoS-aware Cross-layer Dynamic Resource Allocation for Indoor Visible Light Communication-WiFi Heterogeneous Networks[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3516-3523. doi: 10.11999/JEIT210830

QoS-aware Cross-layer Dynamic Resource Allocation for Indoor Visible Light Communication-WiFi Heterogeneous Networks

doi: 10.11999/JEIT210830
Funds:  The National Natural Science Foundation of China (51977021), The Natural Science Foundation of Chongqing (2019 jcyj-msxmX0613, 2020jcyj-msxmX0682)
  • Received Date: 2021-08-13
  • Accepted Date: 2022-01-12
  • Rev Recd Date: 2022-01-05
  • Available Online: 2022-02-03
  • Publish Date: 2022-10-19
  • VLC-WiFi (Visible Light Communication-Wireless Fidelity) heterogeneous networks are becoming a popular short-distance wireless communication solution. However, limited spectrum resources make it difficult for VLC-WiFi heterogeneous network to meet the rapidly growth for data bandwidth of user. Combined with the link transmission performance of the physical layer and the queue buffer delay performance of the media access control layer, an evaluation formula of dynamic link transmission performance and link Quality of Service (QoS) perception level are defined. According to the QoS requirements of data packets, the QoS-aware Cross-Layer Dynamic Resource Allocation (QoS-CLDRA) is proposed. Furthermore, the user matching and power allocation strategy based on non-orthogonal multiple access are designed to improve the system throughput. Simulation results show that the proposed QoS-CLDRA can effectively improve the system throughput and reduce the buffer queue length.
  • loading
  • [1]
    付亚伟. 大数据互联网时代光纤通信技术的发展与挑战[J]. 重庆邮电大学学报:自然科学版, 2021, 33(1): 52–58. doi: 10.3979/j.issn.1673-825X.201905080181

    FU Yawei. Development and challenge of optical fiber communication technology in the era of big data internet[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2021, 33(1): 52–58. doi: 10.3979/j.issn.1673-825X.201905080181
    [2]
    MARSHOUD H, MUHAIDAT S, SOFOTASIOS P C, et al. Optical Non-orthogonal multiple access for visible light communication[J]. IEEE Wireless Communications, 2018, 25(2): 82–88. doi: 10.1109/MWC.2018.1700122
    [3]
    雷新颖, 王成. 一种多孔径接收器的设计及其可见光通信系统[J]. 重庆邮电大学学报:自然科学版, 2021, 33(1): 59–66. doi: 10.3979/j.issn.1673-825X.201902150057

    LEI Xinying and WANG Cheng. Design of amultiple bore diameter receiver and its visible communication system[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2021, 33(1): 59–66. doi: 10.3979/j.issn.1673-825X.201902150057
    [4]
    WU Xiping, CHEN Cheng, and HAAS H. Mobility management for hybrid LiFi and WiFi networks in the presence of light-path blockage[C]. The IEEE 88th Vehicular Technology Conference, Chicago, USA, 2019: 1–5.
    [5]
    LIU Huanlin, PU Xin, CHEN Yong, et al. User-centric access scheme based on interference management for indoor VLC-WIFI heterogeneous networks[J]. IEEE Photonics Journal, 2020, 12(4): 7903712. doi: 10.1109/JPHOT.2020.3002246
    [6]
    谢显中, 高龙龙, 卢华兵. VLC网络中兼顾QoS和公平性的协作子载波与功率分配算法[J]. 重庆邮电大学学报:自然科学版, 2021, 33(1): 7–17. doi: 10.3979/j.issn.1673-825X.201904090122

    XIE Xianzhong, GAO Longlong, and LU Huabing. Coordinated subcarrier and power allocation algorithms considering both QoS and fairness for VLC networks[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2021, 33(1): 7–17. doi: 10.3979/j.issn.1673-825X.201904090122
    [7]
    BAO Xu, ADJARDJAH W, OKINE A A, et al. A QoE-maximization-based vertical handover scheme for VLC heterogeneous networks[J]. EURASIP Journal on Wireless Communications and Networking, 2018, 2018(1): 269. doi: 10.1186/s13638-018-1284-1
    [8]
    OBEED M, SALHAB A M, ZUMMO S A, et al. Joint optimization of power allocation and load balancing for hybrid VLC/RF networks[J]. Journal of Optical Communications and Networking, 2018, 10(5): 553–562. doi: 10.1364/JOCN.10.000553
    [9]
    XU Jiaojiao, GONG Chen, LUO Jianghua, et al. LED half-power angle optimization for ultra-dense indoor visible light communication network deployment[J]. IEEE Open Journal of the Communications Society, 2020, 1: 835–848. doi: 10.1109/OJCOMS.2020.3005421
    [10]
    HAMMOUDA M, AKIN S, VEGNI A M, et al. Link selection in hybrid RF/VLC systems under statistical queueing constraints[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2738–2754. doi: 10.1109/TWC.2018.2802937
    [11]
    DONG Xiaoli, CHI Xuefen, SUN Hongliang, et al. Scheduling with heterogeneous QoS provisioning for indoor visible-light communication[J]. Current Optics and Photonics, 2018, 2(1): 39–46. doi: 10.3807/COPP.2018.2.1.039
    [12]
    BAI Xiangwei, LI Qing, and TAO Siyu. Resource allocation based on dynamic user priority for indoor visible light communication ultra-dense networks[C]. The 18th IEEE International Conference on Communication Technology (ICCT), Chongqing, China, 2018: 331–337.
    [13]
    WANG Xuehui and CHEN Wei. Design and optimization of a full duplex CSMA/CA medium access mechanism for hybrid visible light communication networks[C]. The 9th IEEE Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 2020: 347–351.
    [14]
    DEMIR M S and UYSAL M. A cross-layer design for dynamic resource management of VLC networks[J]. IEEE Transactions on Communications, 2021, 69(3): 1858–1867. doi: 10.1109/TCOMM.2021.3056119
    [15]
    ZHU Shansheng, DONG Yuning, and XU Cheng. A statistical QoE-QoS model of video streaming services[C]. The 6th International Conference on Computing and Data Engineering, Sanya, China, 2020: 195–199.
    [16]
    李祝红, 赵灿明, 闫龙, 等. 智能电网中电力线通信网络负载均衡的机会路由协议[J]. 计算机应用, 2019, 39(3): 812–816. doi: 10.11772/j.issn.1001-9081.2018071457

    LI Zhuhong, ZHAO Canming, YAN Long, et al. Load balancing opportunistic routing protocol for power line communication network in smart grids[J]. Journal of Computer Applications, 2019, 39(3): 812–816. doi: 10.11772/j.issn.1001-9081.2018071457
    [17]
    ZHANG Han, LIU H X, CHEN Peng, et al. Cycle-based end of queue estimation at signalized intersections using low-penetration-rate vehicle trajectories[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(8): 3257–3272. doi: 10.1109/TITS.2019.2925111
    [18]
    BOUALI F, SALLENT O, PÉREZ-ROMERO J, et al. A framework based on a fittingness factor to enable efficient exploitation of spectrum opportunities in cognitive radio networks[C]. The 14th International Symposium on Wireless Personal Multimedia Communications (WPMC), Brest, France, 2011: 1–5.
    [19]
    TAO Siyu, YU Hongyi, LI Qing, et al. Performance analysis of gain ratio power allocation strategies for non-orthogonal multiple access in indoor visible light communication networks[J]. EURASIP Journal on Wireless Communications and Networking, 2018, 2018(1): 154. doi: 10.1186/s13638-018-1152-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (499) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return