Advanced Search
Volume 44 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
DONG Chao, TAO Ting, FENG Simeng, QU Yuben, LIU Qingxin, WU Yulei, ZHANG Min. Overview on Medium Access Control Protocol in Flying Ad-hoc NETworks and Vehicular Ad-hoc NETworks[J]. Journal of Electronics & Information Technology, 2022, 44(3): 790-802. doi: 10.11999/JEIT210819
Citation: DONG Chao, TAO Ting, FENG Simeng, QU Yuben, LIU Qingxin, WU Yulei, ZHANG Min. Overview on Medium Access Control Protocol in Flying Ad-hoc NETworks and Vehicular Ad-hoc NETworks[J]. Journal of Electronics & Information Technology, 2022, 44(3): 790-802. doi: 10.11999/JEIT210819

Overview on Medium Access Control Protocol in Flying Ad-hoc NETworks and Vehicular Ad-hoc NETworks

doi: 10.11999/JEIT210819
Funds:  The National Natural Science Foundation of China (61931011, 62001219)
  • Received Date: 2021-08-12
  • Accepted Date: 2021-12-29
  • Rev Recd Date: 2021-12-23
  • Available Online: 2022-01-13
  • Publish Date: 2022-03-28
  • With the iterative update of mobile communication technology, Vehicular Ad-hoc NETworks (VANETs) and Flying Ad-hoc NETworks (FANETs) have become significant parts of the communication network, and the Medium Access Control (MAC) protocol is one of the core research contents of the future development of Mobile Ad-hoc NETworks (MANETs). Security control and user service are the two principal types of message in Ad-hoc networks, where their different Quality of Service (QoS) requirements bring severe challenges to the design of MAC mechanism. In this paper, VANETs and FANETs are mainly taken into consideration. According to their network characteristics and different optimization objectives, the MAC protocols used in them are analyze and summarized, while the future research directions are discussed and prospected.
  • loading
  • [1]
    KATSIGIANNIS P, MISOPOLINOS L, LIAKOPOULOS V, et al. An autonomous multi-sensor UAV system for reduced-input precision agriculture applications[C]. 2016 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece, 2016: 60–64.
    [2]
    ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933
    [3]
    LIU Yajun, ZHU Congxu, DENG Xiaoheng, et al. UAV-aided urban target tracking system based on edge computing[J]. arXiv: 1902.00837, 2020.
    [4]
    JIANG D and DELGROSSI L. IEEE 802.11p: Towards an international standard for wireless access in vehicular environments[C]. VTC Spring 2008-IEEE Vehicular Technology Conference, Marina Bay, Singapore, 2008: 2036–2040.
    [5]
    IEEE. IEEE Std 1609.1-2006 IEEE trial-use standard for wireless access in vehicular environments (wave)-resource manager[S]. New York, USA: IEEE, 2006: 1–71.
    [6]
    IEEE. IEEE Std 1609.2-2006 IEEE trial-use standard for wireless access in vehicular environments-security services for applications and management messages[S]. New York, USA: IEEE, 2006: 1–105.
    [7]
    IEEE. IEEE Std 1609.3-2007 IEEE trial-use standard for wireless access in vehicular environments (WAVE)-networking services[S]. New York, USA: IEEE, 2007: 1–99.
    [8]
    IEEE. IEEE Std 1609.4-2010 IEEE standard for wireless access in vehicular environments (WAVE)--multi-channel operation[S]. New York, USA: IEEE, 2011: 1–89.
    [9]
    MISHRA D and NATALIZIO E. A survey on cellular-connected UAVs: Design challenges, enabling 5G/B5G innovations, and experimental advancements[J]. Computer Networks, 2020, 182: 107451. doi: 10.1016/j.comnet.2020.107451
    [10]
    GURES E, SHAYEA I, ALHAMMADI A, et al. A comprehensive survey on mobility management in 5G heterogeneous networks: Architectures, challenges and solutions[J]. IEEE Access, 2020, 8: 195883–195913. doi: 10.1109/ACCESS.2020.3030762
    [11]
    ISOLANI P H, CLAEYS M, DONATO C, et al. A survey on the programmability of wireless MAC protocols[J]. IEEE Communications Surveys & Tutorials, 2019, 21(2): 1064–1092. doi: 10.1109/COMST.2018.2881761
    [12]
    吴国栋, 董超, 李艾静, 等. 车辆自组网多信道MAC机制研究综述[J]. 通信技术, 2018, 51(7): 1491–1496. doi: 10.3969/j.issn.1002-0802.2018.07.001

    WU Guodong, DONG Chao, LI Aijing, et al. Overview on multi-channel MAC mechanisms in vehicle ad hoc network[J]. Communications Technology, 2018, 51(7): 1491–1496. doi: 10.3969/j.issn.1002-0802.2018.07.001
    [13]
    CAO Jin, MA Maode, LI Hui, et al. A survey on security aspects for 3GPP 5G networks[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 170–195. doi: 10.1109/COMST.2019.2951818
    [14]
    GARCIA-ROGER D, GONZÁLEZ E E, MARTÍN-SACRISTÁN D, et al. V2X support in 3GPP specifications: From 4G to 5G and beyond[J]. IEEE Access, 2020, 8: 190946–190963. doi: 10.1109/ACCESS.2020.3028621
    [15]
    LI Bin, FEI Zesong, and ZHANG Yan. UAV communications for 5G and beyond: Recent advances and future trends[J]. IEEE Internet of Things Journal, 2019, 6(2): 2241–2263. doi: 10.1109/JIOT.2018.2887086
    [16]
    POPOVSKI P, TRILLINGSGAARD K F, SIMEONE O, et al. 5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view[J]. IEEE Access, 2018, 6: 55765–55779. doi: 10.1109/ACCESS.2018.2872781
    [17]
    EZE E C, ZHANG Sijing, LIU Enjie, et al. Advances in vehicular ad-hoc networks (VANETs): Challenges and road-map for future development[J]. International Journal of Automation and Computing, 2016, 13(1): 1–18. doi: 10.1007/s11633-015-0913-y
    [18]
    XU Wenchao, ZHOU Haibo, CHENG Nan, et al. Internet of vehicles in big data era[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1): 19–35. doi: 10.1109/JAS.2017.7510736
    [19]
    任广山, 常晶, 陈为胜. 无人机系统智能自主控制技术发展现状与展望[J]. 控制与信息技术, 2018(6): 7–13.

    REN Guangshan, CHANG Jing, and CHEN Weisheng. Present and prospect of intelligent autonomous control for UAV[J]. Control and Information Technology, 2018(6): 7–13.
    [20]
    WU Hui, HAN Haiting, WANG Xiao, et al. Research on artificial intelligence enhancing internet of things security: A survey[J]. IEEE Access, 2020, 8: 153826–153848. doi: 10.1109/ACCESS.2020.3018170
    [21]
    XIE Junfeng, TANG Helen, HUANG Tao, et al. A survey of blockchain technology applied to smart cities: Research issues and challenges[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2794–2830. doi: 10.1109/COMST.2019.2899617
    [22]
    HEWA T, GÜR G, KALLA A, et al. The role of blockchain in 6G: Challenges, opportunities and research directions[C]. 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 2020: 1–5.
    [23]
    ABBAS N, ZHANG Yan, TAHERKORDI A, et al. Mobile edge computing: A survey[J]. IEEE Internet of Things Journal, 2018, 5(1): 450–465. doi: 10.1109/JIOT.2017.2750180
    [24]
    BEKMEZCI I, SAHINGOZ O K, and TEMEL Ş. Flying ad-hoc networks (FANETs): A survey[J]. Ad Hoc Networks, 2013, 11(3): 1254–1270. doi: 10.1016/j.adhoc.2012.12.004
    [25]
    IEEE. IEEE Std 1609.4-2016 IEEE standard for wireless access in vehicular environments (WAVE) -- multi-channel operation[S]. New York, USA: IEEE, 2016: 1–206.
    [26]
    JAHN A, DAVID K, and ENGEL S. 5G/LTE based protection of vulnerable road users: Detection of crossing a curb[C]. 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, USA, 2015: 1–5.
    [27]
    CHENG Xiang, ZHANG Rongqiang, and YANG Liuqing. Wireless toward the era of intelligent vehicles[J]. IEEE Internet of Things Journal, 2019, 6(1): 188–202. doi: 10.1109/JIOT.2018.2884200
    [28]
    NGUYEN V, KIM O T T, PHAM C, et al. A survey on adaptive multi-channel MAC protocols in VANETs using Markov models[J]. IEEE Access, 2018, 6: 16493–16514. doi: 10.1109/ACCESS.2018.2814600
    [29]
    LYU F, ZHU Hongzi, ZHOU Haibo, et al. MoMAC: Mobility-aware and collision-avoidance MAC for safety applications in VANETs[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10590–10602. doi: 10.1109/TVT.2018.2866496
    [30]
    ZHANG Yue, LIU Kai, LIU Shanzhi, et al. A clustering-based collision-free multichannel MAC protocol for vehicular ad hoc networks[C]. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, USA, 2018: 1–7.
    [31]
    LYU F, ZHU Hongzi, CHENG Nan, et al. ABC: Adaptive beacon control for rear-end collision avoidance in VANETs[C]. 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Hong Kong, China, 2018: 1–9.
    [32]
    SHAH A F M S, ILHAN H, and TURELI U. RECV-MAC: A novel reliable and efficient cooperative MAC protocol for VANETs[J]. IET Communications, 2019, 13(16): 2541–2549. doi: 10.1049/iet-com.2018.6171
    [33]
    KARABULUT M A, SHAH A F M S, and ILHAN H. OEC-MAC: A novel OFDMA based efficient cooperative MAC protocol for VANETS[J]. IEEE Access, 2020, 8: 94665–94677. doi: 10.1109/ACCESS.2020.2995807
    [34]
    CAO Yi, ZHANG Haixia, FANG Yuguang, et al. An adaptive high-throughput multichannel MAC protocol for VANETs[J]. IEEE Internet of Things Journal, 2020, 7(9): 8249–8262. doi: 10.1109/JIOT.2020.2990568
    [35]
    LYU F, ZHU Hongzi, ZHOU Haibo, et al. SS-MAC: A novel time slot-sharing MAC for safety messages broadcasting in VANETs[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3586–3597. doi: 10.1109/TVT.2017.2780829
    [36]
    LIN Zhiping, SUN Yanglong, TANG Yuliang, et al. An efficient message broadcasting MAC protocol for VANETs[J]. Wireless Networks, 2020, 26(8): 6043–6057. doi: 10.1007/s11276-020-02415-y
    [37]
    GAO Jie, LI Mushu, ZHAO Lian, et al. Contention intensity based distributed coordination for V2V Safety message broadcast[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 12288–12302. doi: 10.1109/TVT.2018.2876388
    [38]
    ZHANG Tianjiao and ZHU Qi. EVC-TDMA: An enhanced TDMA based cooperative MAC protocol for vehicular networks[J]. Journal of Communications and Networks, 2020, 22(4): 316–325. doi: 10.1109/JCN.2020.000021
    [39]
    ABD EL-GAWAD M A, ELSHARIEF M, and KIM H. A cooperative V2X MAC protocol for vehicular networks[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: 65. doi: 10.1186/s13638-019-1382-8
    [40]
    DUBE P and WALINGO T. Performance analysis of an adaptive OFDMA-based CSMA/CA scheme on a wireless network[J]. IET Communications, 2020, 14(19): 3480–3489. doi: 10.1049/iet-com.2019.1078
    [41]
    KUMAR S, CHOI S, and KIM H. Analysis of hidden terminal’s effect on the performance of vehicular ad-hoc networks[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: 240. doi: 10.1186/s13638-019-1548-4
    [42]
    ZHAO Yuqiang, ZHANG Xuan, ZHENG Rongping, et al. Analysis on merging collision probability in TDMA based VANET[C]. 10th EAI International Conference on Wireless and Satellite Systems, Harbin, China, 2019: 3–12.
    [43]
    KUMAR S and KIM H. BH-MAC: An efficient hybrid MAC protocol for vehicular communication[C]. 2020 International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 2020: 362–367.
    [44]
    DENG Dongxiao, RAO Wenbi, LIU Bingyi, et al. TA-MAC: A traffic-aware TDMA MAC protocol for safety message dissemination in MEC-assisted VANETs[C]. 2020 29th International Conference on Computer Communications and Networks (ICCCN), Honolulu, USA, 2020: 1–9.
    [45]
    YANG Yue, KARIMADINI M, XIANG Cheng, et al. Wide area surveillance of urban environments using multiple mini-VTOL UAVs[C]. IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 2015: 795–800.
    [46]
    XIAO Pengju, WANG Li, CHUAN Jianbin, et al. Implementation for UAVs aided edge sensing system in wireless emergency communications[C]. 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi'an, China, 2019: 1–5.
    [47]
    LALIBERTE A S and RANGO A. Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 761–770. doi: 10.1109/TGRS.2008.2009355
    [48]
    RYAN A and HEDRICK J K. A mode-switching path planner for UAV-assisted search and rescue[C]. The 44th IEEE Conference on Decision and Control, Seville, Spain, 2005: 1471–1476.
    [49]
    TANG Jinhui, WANG Yequn, DONG Shufu, et al. A feedback-retransmission based asynchronous frequency hopping MAC protocol for military aeronautical ad hoc networks[J]. Chinese Journal of Aeronautics, 2018, 31(5): 1130–1140. doi: 10.1016/j.cja.2018.02.014
    [50]
    VASHISHT S and JAIN S. An energy-efficient and location-aware medium access control for quality of service enhancement in unmanned aerial vehicular networks[J]. Computers & Electrical Engineering, 2019, 75: 202–217. doi: 10.1016/j.compeleceng.2019.02.021
    [51]
    KALWAR S, CHIN K W, and WANG Luyao. An orientation aware learning MAC for multi-UAVs networks[C]. 2019 29th International Telecommunication Networks and Applications Conference (ITNAC), Auckland, New Zealand, 2019: 1–4.
    [52]
    ZHANG Min, DONG Chao, and HUANG Yang. FS-MAC: An adaptive MAC protocol with fault-tolerant synchronous switching for FANETs[J]. IEEE Access, 2019, 7: 80602–80613. doi: 10.1109/ACCESS.2019.2920175
    [53]
    HUANG Xinquan, LIU Aijun, ZHOU Haibo, et al. FMAC: A self-adaptive MAC protocol for flocking of flying ad hoc network[J]. IEEE Internet of Things Journal, 2021, 8(1): 610–625. doi: 10.1109/JIOT.2020.3007071
    [54]
    WU Guodong, DONG Chao, LI Aijun, et al. FM-MAC: A multi-channel MAC protocol for FANETs with directional antenna[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 1–7. doi: 10.1109/GLOCOM.2018.8648025.
    [55]
    ZHENG Bo, LI Yong, CHENG Wei, et al. A multi-channel load awareness-based MAC protocol for flying ad hoc networks[J]. EURASIP Journal on Wireless Communications and Networking, 2020, 2020: 181. doi: 10.1186/s13638-020-01797-z
    [56]
    XIE Tian, ZHAO Haitao, XIONG Jun, et al. A multi-channel MAC protocol with retrodirective array antennas in flying ad hoc networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1606–1617. doi: 10.1109/TVT.2021.3054646
    [57]
    ZHENG Zhigao, SANGAIAH A K, and WANG Tao. Adaptive communication protocols in flying ad hoc network[J]. IEEE Communications Magazine, 2018, 56(1): 136–142. doi: 10.1109/MCOM.2017.1700323
    [58]
    CHEN Xi, HUANG Chuanhe, FAN Xiying, et al. LDMAC: A propagation delay-aware MAC scheme for long-distance UAV networks[J]. Computer Networks, 2018, 144: 40–52. doi: 10.1016/j.comnet.2018.07.024
    [59]
    刘东, 吴启晖, QUEK T Q S. 面向航空6G的频谱认知智能管控[J]. 物联网学报, 2020, 4(1): 12–18.

    LIU Dong, WU Qihui, and QUEK T Q S. Spectrum cognitive intelligent management and control for aviation 6G[J]. Chinese Journal on Internet of Things, 2020, 4(1): 12–18.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(6)

    Article Metrics

    Article views (1524) PDF downloads(392) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return