Citation: | LIN Yanfei, ZANG Boyu, GUO Rongxiao, LIU Zhiwen, GAO Xiaorong. A Deep Learning Method for SSVEP Classification Based on Phase and Frequency Characteristics[J]. Journal of Electronics & Information Technology, 2022, 44(2): 446-454. doi: 10.11999/JEIT210816 |
[1] |
LIN Zhonglin, ZHANG Changshui, WU Wei, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2610–2614. doi: 10.1109/TBME.2006.886577
|
[2] |
林中林, 张雅静, 高小榕, 等. 一种通过脑电信号实时检测双眼竞争的方法[J]. 航天医学与医学工程, 2007, 20(5): 381–384. doi: 10.3969/j.issn.1002-0837.2007.05.016
LIN Zhonglin, ZHANG Yajing, GAO Xiaorong, et al. A method for real-time detection of binocular rivalry through electroencephalogram[J]. Space Medicine &Medical Engineering, 2007, 20(5): 381–384. doi: 10.3969/j.issn.1002-0837.2007.05.016
|
[3] |
NAKANISHI M, WANG Yijun, WANG Yute, et al. Enhancing unsupervised canonical correlation analysis-based frequency detection of SSVEPs by incorporating background EEG[C]. Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, USA, 2014: 3053–3056.
|
[4] |
CHEN Xiaogang, WANG Yijun, NAKANISHI M, et al. High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44): E6058–E6067. doi: 10.1073/pnas.1508080112
|
[5] |
CHEN Xiaogang, WANG Yijun, Gao Shangkai, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface[J]. Journal of Neural Engineering, 2015, 12(4): 046008. doi: 10.1088/1741-2560/12/4/046008
|
[6] |
YIN Erwei, ZHOU Zongtan, JIANG Jun, et al. A dynamically optimized SSVEP brain-computer interface (BCI) speller[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(6): 1447–1456. doi: 10.1109/TBME.2014.2320948
|
[7] |
岳敬伟. 脑机协调控制理论与关键技术研究[D]. [博士论文], 国防科学技术大学, 2015.
YUE Jingwei. On brain-computer coordination control theory and key technologies[D]. [Ph. D. dissertation], National University of Defense Technology, 2015.
|
[8] |
YANG Chen, HAN Xu, WANG Yijun, et al. A dynamic window recognition algorithm for SSVEP-based brain-computer interfaces using a spatio-temporal equalizer[J]. International Journal of Neural Systems, 2018, 28(10): 1850028. doi: 10.1142/S0129065718500284
|
[9] |
BEVILACQUA V, TATTOLI G, BUONGIORNO D, et al. A novel BCI-SSVEP based approach for control of walking in virtual environment using a convolutional neural network[C]. Proceedings of 2014 International Joint Conference on Neural Networks, Beijing, China, 2014: 4121–4128.
|
[10] |
KWAK N S, MÜLLER K R, and LEE S W. A convolutional neural network for steady state visual evoked potential classification under ambulatory environment[J]. PLoS One, 2017, 12(2): e0172578. doi: 10.1371/journal.pone.0172578
|
[11] |
ATTIA M, HETTIARACHCHI I, HOSSNY M, et al. A time domain classification of steady-state visual evoked potentials using deep recurrent-convolutional neural networks[C]. Proceedings of the 15th International Symposium on Biomedical Imaging, Washington, USA, 2018: 766–769.
|
[12] |
ATTIA M, HETTIARACHCHI I, MOHAMED S, et al. A frequency domain classifier of steady-state visual evoked potentials using deep separable convolutional neural networks[C]. Proceedings of 2018 International Conference on Systems, Man, and Cybernetics, Miyazaki, Japan, 2018: 2134–2139.
|
[13] |
EL-FIQI H, WANG Min, SALIMI N, et al. Convolution neural networks for person identification and verification using steady state visual evoked potential[C]. Proceedings of 2018 International Conference on Systems, Man, and Cybernetics, Miyazaki, Japan, 2018: 1062–1069.
|
[14] |
AZNAN N K N, BONNER S, CONNOLLY J, et al. On the classification of SSVEP-based dry-EEG signals via convolutional neural networks[C]. Proceedings of 2018 International Conference on Systems, Man, and Cybernetics, Miyazaki, Japan, 2018: 3726–3731.
|
[15] |
杜光景, 谢俊, 张玉彬, 等. 用于稳态视觉诱发电位脑机接口目标识别的深度学习方法[J]. 西安交通大学学报, 2019, 53(11): 42–48. doi: 10.7652/xjtuxb201911006
DU Guangjing, XIE Jun, ZHANG Yubin, et al. A deep learning method for target recognition in steady-state visual evoked potential–based brain-computer interface[J]. Journal of Xi’an Jiaotong University, 2019, 53(11): 42–48. doi: 10.7652/xjtuxb201911006
|
[16] |
LIU Bingchuan, HUANG Xiaoshan, WANG Yijun, et al. BETA: A large benchmark database toward SSVEP-BCI application[J]. Frontiers in Neuroscience, 2020, 14: 627. doi: 10.3389/fnins.2020.00627
|