Advanced Search
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
WANG Yang, YANG Mengyu, ZHAO Shoubo. Compressed Sensing Reconstruction of Hyperspectral Images Based on Adaptive Blocking[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2605-2613. doi: 10.11999/JEIT220738
Citation: LIN Yanfei, ZANG Boyu, GUO Rongxiao, LIU Zhiwen, GAO Xiaorong. A Deep Learning Method for SSVEP Classification Based on Phase and Frequency Characteristics[J]. Journal of Electronics & Information Technology, 2022, 44(2): 446-454. doi: 10.11999/JEIT210816

A Deep Learning Method for SSVEP Classification Based on Phase and Frequency Characteristics

doi: 10.11999/JEIT210816
Funds:  The National Natural Science Foundation of China (61601028, 61431007), Beijing Science and Technology Program (Z201100004420015)
  • Received Date: 2021-08-11
  • Accepted Date: 2022-01-20
  • Rev Recd Date: 2022-01-17
  • Available Online: 2022-01-21
  • Publish Date: 2022-02-25
  • A deep learning method for Steady-State Visual Evoked Potential (SSVEP) classification is proposed to solve the problem that phase and frequency information are not fully used in existing deep learning models. First, the proposed model uses complex vectors of fast Fourier transform as input and operates convolution on real and imaginary vectors to learn phase information, and then utilizes the spatial attention module to enhance discriminative frequency information. Next, two-dimensional convolution and max pooling are used to extract further spatial and frequency features. Finally, fully connected layers are utilized to classify. The accuracy of proposed model can reach 81.21% in the case of cross subject, and the accuracy can be further improved to 83.17% by adding the standard sinusoidal signal templates to the training set. The results show that the proposed model achieves better performance than canonical correlation analysis algorithm.
  • [1]
    LIN Zhonglin, ZHANG Changshui, WU Wei, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2610–2614. doi: 10.1109/TBME.2006.886577
    [2]
    林中林, 张雅静, 高小榕, 等. 一种通过脑电信号实时检测双眼竞争的方法[J]. 航天医学与医学工程, 2007, 20(5): 381–384. doi: 10.3969/j.issn.1002-0837.2007.05.016

    LIN Zhonglin, ZHANG Yajing, GAO Xiaorong, et al. A method for real-time detection of binocular rivalry through electroencephalogram[J]. Space Medicine &Medical Engineering, 2007, 20(5): 381–384. doi: 10.3969/j.issn.1002-0837.2007.05.016
    [3]
    NAKANISHI M, WANG Yijun, WANG Yute, et al. Enhancing unsupervised canonical correlation analysis-based frequency detection of SSVEPs by incorporating background EEG[C]. Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, USA, 2014: 3053–3056.
    [4]
    CHEN Xiaogang, WANG Yijun, NAKANISHI M, et al. High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44): E6058–E6067. doi: 10.1073/pnas.1508080112
    [5]
    CHEN Xiaogang, WANG Yijun, Gao Shangkai, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface[J]. Journal of Neural Engineering, 2015, 12(4): 046008. doi: 10.1088/1741-2560/12/4/046008
    [6]
    YIN Erwei, ZHOU Zongtan, JIANG Jun, et al. A dynamically optimized SSVEP brain-computer interface (BCI) speller[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(6): 1447–1456. doi: 10.1109/TBME.2014.2320948
    [7]
    岳敬伟. 脑机协调控制理论与关键技术研究[D]. [博士论文], 国防科学技术大学, 2015.

    YUE Jingwei. On brain-computer coordination control theory and key technologies[D]. [Ph. D. dissertation], National University of Defense Technology, 2015.
    [8]
    YANG Chen, HAN Xu, WANG Yijun, et al. A dynamic window recognition algorithm for SSVEP-based brain-computer interfaces using a spatio-temporal equalizer[J]. International Journal of Neural Systems, 2018, 28(10): 1850028. doi: 10.1142/S0129065718500284
    [9]
    BEVILACQUA V, TATTOLI G, BUONGIORNO D, et al. A novel BCI-SSVEP based approach for control of walking in virtual environment using a convolutional neural network[C]. Proceedings of 2014 International Joint Conference on Neural Networks, Beijing, China, 2014: 4121–4128.
    [10]
    KWAK N S, MÜLLER K R, and LEE S W. A convolutional neural network for steady state visual evoked potential classification under ambulatory environment[J]. PLoS One, 2017, 12(2): e0172578. doi: 10.1371/journal.pone.0172578
    [11]
    ATTIA M, HETTIARACHCHI I, HOSSNY M, et al. A time domain classification of steady-state visual evoked potentials using deep recurrent-convolutional neural networks[C]. Proceedings of the 15th International Symposium on Biomedical Imaging, Washington, USA, 2018: 766–769.
    [12]
    ATTIA M, HETTIARACHCHI I, MOHAMED S, et al. A frequency domain classifier of steady-state visual evoked potentials using deep separable convolutional neural networks[C]. Proceedings of 2018 International Conference on Systems, Man, and Cybernetics, Miyazaki, Japan, 2018: 2134–2139.
    [13]
    EL-FIQI H, WANG Min, SALIMI N, et al. Convolution neural networks for person identification and verification using steady state visual evoked potential[C]. Proceedings of 2018 International Conference on Systems, Man, and Cybernetics, Miyazaki, Japan, 2018: 1062–1069.
    [14]
    AZNAN N K N, BONNER S, CONNOLLY J, et al. On the classification of SSVEP-based dry-EEG signals via convolutional neural networks[C]. Proceedings of 2018 International Conference on Systems, Man, and Cybernetics, Miyazaki, Japan, 2018: 3726–3731.
    [15]
    杜光景, 谢俊, 张玉彬, 等. 用于稳态视觉诱发电位脑机接口目标识别的深度学习方法[J]. 西安交通大学学报, 2019, 53(11): 42–48. doi: 10.7652/xjtuxb201911006

    DU Guangjing, XIE Jun, ZHANG Yubin, et al. A deep learning method for target recognition in steady-state visual evoked potential–based brain-computer interface[J]. Journal of Xian Jiaotong University, 2019, 53(11): 42–48. doi: 10.7652/xjtuxb201911006
    [16]
    LIU Bingchuan, HUANG Xiaoshan, WANG Yijun, et al. BETA: A large benchmark database toward SSVEP-BCI application[J]. Frontiers in Neuroscience, 2020, 14: 627. doi: 10.3389/fnins.2020.00627
  • Cited by

    Periodical cited type(5)

    1. 刘东东,张远辉,刘康,王书楠. 基于压缩感知的TDM-MIMO毫米波雷达高分辨三维成像算法及实现. 激光杂志. 2025(02): 131-140 .
    2. 李高平,苗加庆,邱治邦. 分块压缩感知编码的重建图像改进算法. 西南民族大学学报(自然科学版). 2024(01): 75-83 .
    3. 李俊辉,侯兴松. 基于伪监督注意力短期记忆与多尺度去伪影网络的图像分块压缩感知. 电子与信息学报. 2024(02): 472-480 . 本站查看
    4. 赵首博. 熵平均密度分段压缩感知反射光谱重建方法. 光谱学与光谱分析. 2024(11): 3090-3094 .
    5. 汤先美,王春宇,闫顺丕,张立平,周小波,焦俊. 基于残差和卷积神经网络的生猪图像分块压缩感知. 东北农业大学学报. 2023(10): 70-78 .

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (1369) PDF downloads(126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return