Advanced Search
Volume 44 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
Wen Zhengquan, Chen Yuyan. AN ALGORITHM FOR CANONICAL PIECEWISE-LINEAR DYNAMIC NETWORKS CONTAINING ELEMENTS WITH CHARACTERISTIC FAMILY[J]. Journal of Electronics & Information Technology, 1994, 16(3): 275-283.
Citation: LIU Ran, CAO Zhiqiang, DENG Tianrui, DENG Zhongyuan, XIAO Yufeng. Multiple Robots Localization Based on the Fusion of Ultra-Wideband Array and Odometry[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3476-3484. doi: 10.11999/JEIT210812

Multiple Robots Localization Based on the Fusion of Ultra-Wideband Array and Odometry

doi: 10.11999/JEIT210812
Funds:  The National Natural Science Foundation of China (12175187), The National Key Research Program (2019YFB1310805)
  • Received Date: 2021-08-10
  • Rev Recd Date: 2021-10-01
  • Available Online: 2021-11-19
  • Publish Date: 2022-10-19
  • An accurate relative localization is critical for multiple robots to realize collaboration and formation control. Visual or Light Detection And Ranging (LiDAR)-based approaches use feature matching to determine the relative pose between robots in indoor environments with Global Positioning System (GPS)-denied, but which is challenging in non-line-of-sight environment. To solve this problem, a relative positioning approach of mobile robots based on multiple Ultra WideBand (UWB) nodes is proposed. First, multiple UWB nodes carried by mobile robot are used to form UWB array, and the relative pose estimation between robots is realized through nonlinear optimization algorithm. To improve further the localization accuracy, the results of non-linear optimization are constrained through odometry measurements. In addition, in order to meet the real-time requirement, the relative pose and the odometry in the sliding window are optimized through the graph optimization algorithm. However, the uncertainty of the relative pose from the non-linear optimization is not known, thus it will affect the optimization accuracy. Therefore, this paper uses particle filtering to integrate the odometry and relative pose from sliding window to improve further the accuracy. The experimental results show that the proposed approach provides an average positioning error of 0.312 m and orientation error of 4.903° in an indoor environment with a size of 12×6 m, and has good real-time performance.
  • [1]
    GUO Xiansheng, ANSARI N, HU Fangzi, et al. A survey on fusion-based indoor positioning[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 566–594.
    [2]
    MOON S, CHOI Y, KIM D, et al. Outdoor swarm flight system based on RTK-GPS[J]. Journal of KIISE, 2016, 43(12): 1315–1324. doi: 10.5626/JOK.2016.43.12.1315
    [3]
    SAKURAMA K, KOSAKA Y, and NISHIDA S I. Formation control of swarm robots with multiple proximity distance sensors[J]. International Journal of Control, Automation and Systems, 2018, 16(1): 16–26. doi: 10.1007/s12555-016-0741-z
    [4]
    PIASCO N, MARZAT J, and SANFOURCHE M. Collaborative localization and formation flying using distributed stereo-vision[C]. 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016: 1202–1207.
    [5]
    PREISS J A, HONIG W, SUKHATME G S, et al. Crazyswarm: A large nano-quadcopter swarm[C]. 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017: 3299–3304.
    [6]
    杨海, 李威, 张禾, 等. 复杂坏境下基于SINS/UWB的容错组合定位技术研究[J]. 仪器仪表学报, 2017, 38(9): 2177–2185. doi: 10.3969/j.issn.0254-3087.2017.09.011

    YANG Hai, LI Wei, ZHANG He, et al. Fault tolerant integrated positioning system based on SINS/UWB in complex environment[J]. Chinese Journal of Scientific Instrument, 2017, 38(9): 2177–2185. doi: 10.3969/j.issn.0254-3087.2017.09.011
    [7]
    胡久松, 刘宏立, 肖郭璇, 等. 应用于WiFi室内定位的自适应仿射传播聚类算法[J]. 电子与信息学报, 2018, 40(12): 2889–2895.

    HU Jiusong, LIU Hongli, XIAO Guoxuan, et al. Adaptive affine propagation clustering algorithm for WiFi indoor positioning[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2889–2895.
    [8]
    LIU Ran, YUEN C, DO T N, et al. Cooperative positioning for emergency responders using self IMU and peer-to-peer radios measurements[J]. Information Fusion, 2020, 56: 93–102. doi: 10.1016/j.inffus.2019.10.009
    [9]
    SCARAMUZZA D, ACHTELIK M C, DOITSIDIS L, et al. Vision-controlled micro flying robots: From system design to autonomous navigation and mapping in GPS-denied environments[J]. IEEE Robotics & Automation Magazine, 2014, 21(3): 26–40.
    [10]
    SASKA M, BACA T, THOMAS J, et al. System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization[J]. Autonomous Robots, 2017, 41(4): 919–944. doi: 10.1007/s10514-016-9567-z
    [11]
    WANG Xinzuo and LI Wei. Design of an accurate yet low-cost distributed module for vehicular relative positioning: Hardware prototype design and algorithms[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4494–4501. doi: 10.1109/TVT.2019.2901743
    [12]
    TOMIC S, BEKO M, and DINIS R. RSS-based localization in wireless sensor networks using convex relaxation: Noncooperative and cooperative schemes[J]. IEEE Transactions on Vehicular Technology, 2015, 64(5): 2037–2050. doi: 10.1109/TVT.2014.2334397
    [13]
    XU Hao, WANG Luqi, ZHANG Yichen, et al. Decentralized visual-inertial-UWB fusion for relative state estimation of aerial swarm[C]. 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020: 8776–8782.
    [14]
    GHANEM E, O’KEEFE K, and KLUKAS R. Testing vehicle-to-vehicle relative position and attitude estimation using multiple UWB ranging[C]. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, Canada, 2020: 1–5.
    [15]
    吴玉秀, 孟庆浩, 曾明. 基于声音的分布式多机器人相对定位[J]. 自动化学报, 2014, 40(5): 798–809.

    WU Yuxiu, MENG Qinghao, and ZENG Ming. Sound based relative localization for distributed multi-robot systems[J]. Acta Automatica Sinica, 2014, 40(5): 798–809.
    [16]
    FENG Daquan, WANG Chunqi, HE Chunlong, et al. Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation[J]. IEEE Internet of Things Journal, 2020, 7(4): 3133–3146. doi: 10.1109/JIOT.2020.2965115
    [17]
    赵晨, 乔钢, 周锋. 基于正交移动双水下自主潜航器的水下合作目标定位方法[J]. 电子与信息学报, 2021, 43(3): 834–841. doi: 10.11999/JEIT200570

    ZHAO Chen, QIAO Gang, and ZHOU Feng. Underwater cooperative target localization method based on double orthogonal moving autonomous underwater vehicles[J]. Journal of Electronics &Information Technology, 2021, 43(3): 834–841. doi: 10.11999/JEIT200570
    [18]
    BAI Nan, TIAN Yuan, LIU Ye, et al. A high-precision and low-cost IMU-based indoor pedestrian positioning technique[J]. IEEE Sensors Journal, 2020, 20(12): 6716–6726. doi: 10.1109/JSEN.2020.2976102
    [19]
    SAN MARTÍN J, CORTÉS A, ZAMORA-CADENAS L, et al. Precise positioning of autonomous vehicles combining UWB ranging estimations with on-board sensors[J]. Electronics, 2020, 9(8): 1238. doi: 10.3390/electronics9081238
    [20]
    MAGNAGO V, CORBALÁN P, PICCO G P, et al. Robot localization via odometry-assisted Ultra-wideband ranging with stochastic guarantees[C]. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 2019: 1607–1613.
    [21]
    GUO Kexin, QIU Zhirong, MENG Wei, et al. Ultra-wideband based cooperative relative localization algorithm and experiments for multiple unmanned aerial vehicles in GPS denied environments[J]. International Journal of Micro Air Vehicles, 2017, 9(3): 169–186. doi: 10.1177/1756829317695564
    [22]
    LIU Ran, YUEN C, DO T N, et al. Cooperative relative positioning of mobile users by fusing IMU inertial and UWB ranging information[C]. 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017: 5623–5629.
    [23]
    HARDY J, STRADER J, GROSS J N, et al. Unmanned aerial vehicle relative navigation in GPS denied environments[C]. 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS), Savannah, USA, 2016: 344–352.
    [24]
    CHOU C, WANG Di, SONG Dezhen, et al. On the tunable sparse graph solver for pose graph optimization in visual SLAM problems[C]. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 2019: 1300–1306.
    [25]
    ASCHER C, KESSLER C, WANKERL M, et al. Dual IMU indoor navigation with particle filter based map-matching on a smartphone[C]. 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 2010: 1–5.
    [26]
    THRUN S, BURGARD W, and FOX D. Probabilistic Robotics[M]. Cambridge: The MIT Press, 2005.
    [27]
    SCHOUTEN G and STECKEL J. RadarSLAM: Biomimetic SLAM using ultra-wideband pulse-echo radar[C]. 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 2017: 1–8.
  • Cited by

    Periodical cited type(7)

    1. 王艳平. 莱斯信道下大规模MIMO系统传输速率研究. 通讯世界. 2024(05): 49-51 .
    2. 刘珏,程凯欣,杨炜伟. 智能窃听攻击下的物理层安全技术研究. 信息网络安全. 2023(02): 45-53 .
    3. 周峰. 5G通信背景下电子阅读资源安全传输技术研究. 信息记录材料. 2023(04): 134-136 .
    4. 张甫兆. 电视台高清非编制作网网络节点安全传输技术. 西部广播电视. 2023(09): 217-219 .
    5. 谭蓉俊. 一种无线通信防护方法. 舰船电子工程. 2022(04): 79-85 .
    6. 高远,谭蓉俊,邓志祥. 无人机辅助物理层安全下的保密性能优化. 电子与信息学报. 2022(08): 2730-2738 . 本站查看
    7. 陈晓燕. 基于物联网技术的监控视频信息安全传输方法. 信息与电脑(理论版). 2022(13): 22-24 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (1129) PDF downloads(136) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return