Citation: | GENG Suiyan, HU Wei, DING Haicheng, QIAN Zhaojun, ZHAO Xiongwen. Research on Urban Path Loss Model by Machine Learning Based on 3D Electronic Maps and Channel Measurements[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3524-3531. doi: 10.11999/JEIT210802 |
[1] |
NURMELA V, KARTTUNE A, ROIVAINEN A, et al. METIS D1.2: Initial channel models based on measurements[R]. Mobile and Wireless Communications Enablers for the Twenty-Twenty Information Society (METIS), document ICT-317669-METIS/D1.2, 2014.
|
[2] |
PHILLIPS C, SICKER D, and GRUNWALD D. A survey of wireless path loss prediction and coverage mapping methods[J]. IEEE Communications Surveys & Tutorials, 2013, 15(1): 255–270. doi: 10.1109/SURV.2012.022412.00172
|
[3] |
SARKAR T K, JI Zhong, KIM K, et al. A survey of various propagation models for mobile communication[J]. IEEE Antennas and Propagation Magazine, 2003, 45(3): 51–82. doi: 10.1109/MAP.2003.1232163
|
[4] |
AKPADO K A, OGUEJIOFOR O S, ADEWALE A, et al. Pathloss prediction for a typical mobile communication system in Nigeria using empirical models[J]. International Journal of Computer Networks and Wireless Communications (IJCNWC)
|
[5] |
AYADI M, ZINEB A B, and TABBANE S. A UHF path loss model using learning machine for heterogeneous networks[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(7): 3675–3683. doi: 10.1109/TAP.2017.2705112
|
[6] |
KUMARI C U, KORA P, MEENAKSHI K, et al. Short term and long term path loss estimation in urban, suburban and rural areas[C]. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 2019: 114–117.
|
[7] |
MARDENI R and PEY L Y. Path loss model development for urban outdoor coverage of Code Division Multiple Access (CDMA) system in Malaysia[C]. 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 2010: 441–444.
|
[8] |
SAMIMI M K, RAPPAPORT T S, and MACCARTNEY G R. Probabilistic omnidirectional path loss models for millimeter-wave outdoor communications[J]. IEEE Wireless Communications Letters, 2015, 4(4): 357–360. doi: 10.1109/LWC.2015.2417559
|
[9] |
AL-KINANI A, WANG Chengxinag, ZHOU Li, et al. Optical wireless communication channel measurements and models[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 1939–1962. doi: 10.1109/COMST.2018.2838096
|
[10] |
WU Yanyang, GAO Zhibin, CHEN Canbin, et al. Ray tracing based wireless channel modeling over the sea surface near diaoyu islands[C]. 2015 First International Conference on Computational Intelligence Theory, Systems and Applications (CCITSA), Ilan, China, 2015: 124–128.
|
[11] |
KIM K W and OH S J. Geometric optics-based propagation prediction model in urban street canyon environments[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1128–1131. doi: 10.1109/LAWP.2015.2496182
|
[12] |
GREEN D, YUN Zhengqing, and ISKANDER M F. Path loss characteristics in urban environments using ray-tracing methods[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3063–3066. doi: 10.1109/LAWP.2017.2761299
|
[13] |
OROZA C A, ZHANG Ziran, WATTEYNE T, et al. A machine-learning-based connectivity model for complex terrain large-scale low-power wireless deployments[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(4): 576–584. doi: 10.1109/TCCN.2017.2741468
|
[14] |
OSTLIN E, ZEPERNICK H J, and SUZUKI H. Macrocell path-loss prediction using artificial neural networks[J]. IEEE Transactions on Vehicular Technology, 2010, 59(6): 2735–2747. doi: 10.1109/TVT.2010.2050502
|
[15] |
ZHAO Xiongwen, DU Fei, GENG Suiyan, et al. Playback of 5G and beyond measured MIMO channels by an ANN-based modeling and simulation framework[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9): 1945–1954. doi: 10.1109/JSAC.2020.3000827
|
[16] |
胡玮, 耿绥燕, 赵雄文. 基于自适应粒子群优化的RBF毫米波信道建模研究[J]. 电波科学学报, 2021, 36(3): 405–412. doi: 10.12265/j.cjors.2020201
HU Wei, GENG Suiyan, and ZHAO Xiongwen. RBF neural network channel modeling of millimeter wave based on adaptive particle swarm optimization algorithm[J]. Chinese Journal of Radio Science, 2021, 36(3): 405–412. doi: 10.12265/j.cjors.2020201
|
[17] |
HUANG Jie, WANG Chengxiang, BAI Lu, et al. A big data enabled channel model for 5G wireless communication systems[J]. IEEE Transactions on Big Data, 2020, 6(2): 211–222. doi: 10.1109/TBDATA.2018.2884489
|
[18] |
赵雄文, 孙宁姚, 耿绥燕, 等. 基于最小二乘支持向量机的时变信道建模[J]. 北京邮电大学学报, 2019, 42(5): 29–35.
ZHAO Xiongwen, SUN Ningyao, GENG Suiyan, et al. Time-varying channel modeling using least square support vector machine[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42(5): 29–35.
|
[19] |
WEN Yang, HU Wei, GENG Suiyan, et al. Machine learning based mm-wave 60 GHz channel modeling for 5G wireless communication systems[C]. IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 2019: 1005–1010.
|
[20] |
THRANE J, ZIBAR D, and CHRISTIANSEN H L. Model-aided deep learning method for path loss prediction in mobile communication systems at 2.6 GHz[J]. IEEE Access, 2020, 8: 7925–7936. doi: 10.1109/ACCESS.2020.2964103
|
[21] |
ATES H F, HASHIR S M, BAYKAS T, et al. Path loss exponent and shadowing factor prediction from satellite images using deep learning[J]. IEEE Access, 2019, 7: 101366–101375. doi: 10.1109/ACCESS.2019.2931072
|
[22] |
CHENG Hong, MA Shengjie, and LEE H. CNN-based mmWave path loss modeling for fixed wireless access in suburban scenarios[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(10): 1694–1698. doi: 10.1109/LAWP.2020.3014314
|
[23] |
LEE J, KANG M Y, and KIM S C. Path loss exponent prediction for outdoor millimeter wave channels through deep learning[C]. 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 2019: 1–5.
|
[24] |
PAN S J and YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345–1359. doi: 10.1109/TKDE.2009.191
|
[25] |
YANG Yang, LI Yang, ZHANG Wuxiong, et al. Generative-adversarial-network-based wireless channel modeling: Challenges and opportunities[J]. IEEE Communications Magazine, 2019, 57(3): 22–27. doi: 10.1109/MCOM.2019.1800635
|
[26] |
YANG Guanshu, ZHANG Yan, HE Zunwen, et al. Machine-learning-based prediction methods for path loss and delay spread in air-to-ground millimetre-wave channels[J]. IET Microwaves, Antennas & Propagation, 2019, 13(8): 1113–1121. doi: 10.1049/iet-map.2018.6187
|
[27] |
ZHANG Yan, WEN Jinxiao, YANG Guanshu, et al. Path loss prediction based on machine learning: Principle, method, and data expansion[J]. Applied Sciences, 2019, 9(9): 1908. doi: 10.3390/app9091908
|