Citation: | LI Sheng, XU Feiyang, LI Yuxiao, LIU Songhua, ZHANG Wensheng, GUO Zhaolu. A Method for Evaluating the Severity of Intermittent Faults of Electronic Systems Based on Variational Mode Decomposition-Gated Recurrent Units[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3673-3682. doi: 10.11999/JEIT210795 |
[1] |
IEEE. IEEE 100: The authoritative dictionary of IEEE standards terms, seventh edition[S]. USA: IEEE Press, 2000.
|
[2] |
ZHOU Donghua, ZHAO Yinghong, WANG Zidong, et al. Review on diagnosis techniques for intermittent faults in dynamic systems[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2337–2347. doi: 10.1109/TIE.2019.2907500
|
[3] |
RASHID L, PATTABIRAMAN K, and GOPALAKRISHNAN S. Characterizing the impact of intermittent hardware faults on programs[J]. IEEE Transactions on Reliability, 2015, 64(1): 297–310. doi: 10.1109/TR.2014.2363152
|
[4] |
SAVIR J. Testing for single intermittent failures in combinational circuits by maximizing the probability of fault detection[J]. IEEE Transactions on Computers, 1980, C-29(5): 410–416. doi: 10.1109/TC.1980.1675595
|
[5] |
ZHANG Liangwei, LIN Jing, LIU Bin, et al. A review on deep learning applications in prognostics and health management[J]. IEEE Access, 2019, 7: 162415–162438. doi: 10.1109/ACCESS.2019.2950985
|
[6] |
刘惠, 刘振宇, 郏维强, 等. 深度学习在装备剩余使用寿命预测技术中的研究现状与挑战[J]. 计算机集成制造系统, 2021, 27(1): 34–52.
LIU Hui, LIU Zhenyu, JIA Weiqiang, et al. Current research and challenges of deep learning for equipment remaining useful life prediction[J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 34–52.
|
[7] |
GAO Zhiwei, CECATI C, and DING S X. A survey of fault diagnosis and fault-tolerant techniques-part I: Fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757–3767. doi: 10.1109/TIE.2015.2417501
|
[8] |
GAO Zhiwei, CECATI C, and DING S X. A survey of fault diagnosis and fault-tolerant techniques-Part II: Fault diagnosis with knowledge-based and hybrid/active approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3768–3774.
|
[9] |
LIU Zhenbao, JIA Zhen, VONG C M, et al. Capturing high-discriminative fault features for electronics-rich analog system via deep learning[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1213–1226. doi: 10.1109/TII.2017.2690940
|
[10] |
SHRESTHA A and MAHMOOD A. Review of deep learning algorithms and architectures[J]. IEEE Access, 2019, 7: 53040–53065. doi: 10.1109/ACCESS.2019.2912200
|
[11] |
ZHENG Shuai, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]. 2017 IEEE International Conference on Prognostics and Health Management, Dallas, USA, 2017: 88–95.
|
[12] |
SHI Junyou, HE Qingjie, and WANG Zili. A transfer learning LSTM network-based severity evaluation for intermittent faults of an electrical connector[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 11(1): 71–82.
|
[13] |
DE BRUIN T, VERBERT K, and BABUŠKA R. Railway track circuit fault diagnosis using recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 523–533. doi: 10.1109/TNNLS.2016.2551940
|
[14] |
SHI Junyou, HE Qingjie, and WANG Zili. An LSTM-based severity evaluation method for intermittent open faults of an electrical connector under a shock test[J]. Measurement, 2021, 173: 108653. doi: 10.1016/j.measurement.2020.108653
|
[15] |
DRAGOMIRETSKIY K and ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544. doi: 10.1109/TSP.2013.2288675
|
[16] |
ZHANG Yahui, ZHOU Taotao, HUANG Xufeng, et al. Fault diagnosis of rotating machinery based on recurrent neural networks[J]. Measurement, 2021, 171: 108774. doi: 10.1016/j.measurement.2020.108774
|
[17] |
TAO Ying, WANG Xiaodan, SÁNCHEZ R V, et al. Spur gear fault diagnosis using a multilayer gated recurrent unit approach with vibration signal[J]. IEEE Access, 2019, 7: 56880–56889. doi: 10.1109/ACCESS.2019.2914181
|
[18] |
QI Haiyu, GANESAN S, and PECHT M. No-fault-found and intermittent failures in electronic products[J]. Microelectronics Reliability, 2008, 48(5): 663–674. doi: 10.1016/j.microrel.2008.02.003
|
[19] |
KERKHOFF H G and EBRAHIMI H. Investigation of intermittent resistive faults in digital CMOS circuits[J]. Journal of Circuits, Systems and Computers, 2016, 25(3): 1640023. doi: 10.1142/S0218126616400235
|
[20] |
LIU Cang, WANG Jianye, ZHANG Antang, et al. Research on the fault diagnosis technology of intermittent connection failure belonging to FPGA solder-joints in BGA package[J]. Optik, 2014, 125(2): 737–740. doi: 10.1016/j.ijleo.2013.07.044
|
[21] |
LI Huakang, LYU Kehong, ZHANG Yong, et al. Study of solder joint intermittent fault diagnosis based on dynamic analysis[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(9): 1748–1758. doi: 10.1109/TCPMT.2019.2929752
|
[22] |
HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193
|
[23] |
CARSON J R. Notes on the theory of modulation[J]. Proceedings of the Institute of Radio Engineers, 1922, 10(1): 57–64.
|
[24] |
LI Junning, CHEN Wuge, HAN Ka, et al. Fault diagnosis of rolling bearing based on GA-VMD and improved WOA-LSSVM[J]. IEEE Access, 2020, 8: 166753–166767. doi: 10.1109/ACCESS.2020.3023306
|
[25] |
LI Yuxiao, ZHOU Xinglong, and LI Sheng. A intermittent fault injection strategy for electronic equipment health status recognition[C]. 2020 11th International Conference on Prognostics and System Health Management, Jinan, China: IEEE, 2020: 68–73.
|
[26] |
MIAO Xiaodong, LI Shunming, ZHU Yanqi, et al. A novel real-time fault diagnosis method for planetary gearbox using transferable hidden layer[J]. IEEE Sensors Journal, 2020, 20(15): 8403–8412. doi: 10.1109/JSEN.2020.2965988
|
[27] |
LIAO Guoping, GAO Wei, YANG Gengjie, et al. Hydroelectric generating unit fault diagnosis using 1-D convolutional neural network and gated recurrent unit in small hydro[J]. IEEE Sensors Journal, 2019, 19(20): 9352–9363. doi: 10.1109/JSEN.2019.2926095
|