Citation: | SHAO Yanhua, ZHANG Duo, CHU Hongyu, ZHANG Xiaoqiang, RAO Yunbo. A Review of YOLO Object Detection Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697-3708. doi: 10.11999/JEIT210790 |
[1] |
LIU Li, OUYANG Wanli, WANG Xiaogang, et al. Deep learning for generic object detection: A survey[J]. International Journal of Computer Vision, 2020, 128(2): 261–318. doi: 10.1007/s11263-019-01247-4
|
[2] |
ZOU Zhengxia, SHI Zhenwei, GUO Yuhong, et al. Object detection in 20 years: A survey[J]. arXiv preprint arXiv: 1905.05055, 2019.
|
[3] |
DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886–893.
|
[4] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
|
[5] |
LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
|
[6] |
JIAO Licheng, ZHANG Fan, LIU Fang, et al. A survey of deep learning-based object detection[J]. IEEE Access, 2019, 7: 128837–128868. doi: 10.1109/access.2019.2939201
|
[7] |
WU Xiongwei, SAHOO D, and HOI S C H. Recent advances in deep learning for object detection[J]. Neurocomputing, 2020, 396: 39–64. doi: 10.1016/j.neucom.2020.01.085
|
[8] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
|
[9] |
WANG C Y, YEH I H, and LIAO H Y M. You only learn one representation: Unified network for multiple tasks[J]. arXiv preprint arXiv: 2105.04206, 2021.
|
[10] |
GE Zheng, LIU Songtao, WANG Feng, et al. YOLOX: Exceeding YOLO series in 2021[J]. arXiv preprint arXiv: 2107.08430, 2021.
|
[11] |
REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525.
|
[12] |
REDMON J and FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.
|
[13] |
BOCHKOVSKIY A, WANG C Y, and LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.
|
[14] |
JOCHER G, STOKEN A, BOROVEC J, et al. Ultralytics/YOLOv5: V3.1 - bug fixes and performance improvements[EB/OL].https://doi.org/10.5281/zenodo.4154370, 2020.
|
[15] |
WANG C Y, BOCHKOVSKIY A, and LIAO H Y M. Scaled-YOLOv4: Scaling cross stage partial network[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 13024–13033.
|
[16] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755.
|
[17] |
罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6): 1230–1239. doi: 10.3969/j.issn.0372-2112.2020.06.026
LUO Huilan and CHEN Hongkun. Survey of object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(6): 1230–1239. doi: 10.3969/j.issn.0372-2112.2020.06.026
|
[18] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
|
[19] |
EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The PASCAL visual object classes challenge: A retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98–136. doi: 10.1007/s11263-014-0733-5
|
[20] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[21] |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2020: 1571–1580.
|
[22] |
MISRA D. Mish: A self regularized non-monotonic activation function[J]. arXiv preprint arXiv: 1908.08681, 2019.
|
[23] |
LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8759–8768.
|
[24] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
|
[25] |
GHIASI G, LIN T Y, and LE Q V. NAS-FPN: Learning scalable feature pyramid architecture for object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7029–7038.
|
[26] |
ELFWING S, UCHIBE E, and DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3–11. doi: 10.1016/j.neunet.2017.12.012
|
[27] |
HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 1314–1324.
|
[28] |
MA Ningning, ZHANG Xiangyu, ZHENG Haitao, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]. 2018 15th European Conference on Computer Vision, Munich, Germany, 2018: 122–138.
|
[29] |
李成跃, 姚剑敏, 林志贤, 等. 基于改进YOLO轻量化网络的目标检测方法[J]. 激光与光电子学进展, 2020, 57(14): 141003. doi: 10.3788/LOP57.141003
LI Chengyue, YAO Jianmin, LIN Zhixian, et al. Object detection method based on improved YOLO lightweight network[J]. Laser &Optoelectronics Progress, 2020, 57(14): 141003. doi: 10.3788/LOP57.141003
|
[30] |
HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
|
[31] |
YANG Yang and DENG Hongmin. GC-YOLOv3: You only look once with global context block[J]. Electronics, 2020, 9(8): 1235. doi: 10.3390/electronics9081235
|
[32] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. 2018 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
|
[33] |
ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]. The 34th 2020 AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12993–13000.
|
[34] |
REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 658–666.
|
[35] |
BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS--improving object detection with one line of code[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5562–5570.
|
[36] |
CHEN Zhiming, CHEN Kean, LIN Weiyao, et al. PIoU loss: Towards accurate oriented object detection in complex environments[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 195–211.
|
[37] |
DU Dawei, ZHU Pengfei, WEN Longyin, et al. VisDrone-DET2019: The vision meets drone object detection in image challenge results[C]. 2019 IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Korea (South), 2019: 213–226.
|
[38] |
University of Saskatchewan. Kaggle competition: Global wheat detection[EB/OL]. https://www.kaggle.com/c/global-wheat-detection, 2020.
|
[39] |
HUANG Zhanchao, WANG Jianlin, FU Xuesong, et al. DC-SPP-YOLO: Dense connection and spatial pyramid pooling based YOLO for object detection[J]. Information Sciences, 2020, 522: 241–258. doi: 10.1016/j.ins.2020.02.067
|
[40] |
HUANG Xin, WANG Xinxin, LV Wenyu, et al. PP-YOLOv2: A practical object detector[J]. arXiv preprint arXiv: 2104.10419, 2021.
|
[41] |
DING Jian, XUE Nan, XIA Guisong, et al. Object detection in aerial images: A large-scale benchmark and challenges[J]. arXiv preprint arXiv: 2102.12219, 2021.
|
[42] |
TEKIN B, SINHA S N, and FUA P. Real-time seamless single shot 6D object pose prediction[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 292–301.
|
[43] |
SIMON M, AMENDE K, KRAUS A, et al. Complexer-YOLO: Real-time 3D object detection and tracking on semantic point clouds[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 1190–1199.
|
[44] |
TAKAHASHI M, JI Y, UMEDA K, et al. Expandable YOLO: 3D object detection from RGB-D images[C]. 2020 21st International Conference on Research and Education in Mechatronics (REM), Cracow, Poland, 2020: 1–5.
|
[45] |
DING Caiwen, WANG Shuo, LIU Ning, et al. REQ-YOLO: A resource-aware, efficient quantization framework for object detection on FPGAs[C]. 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, USA, 2019: 33–42.
|
[46] |
LEE Y, LEE C, LEE H J, et al. Fast detection of objects using a YOLOv3 network for a vending machine[C]. 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Hsinchu, China, 2019: 132–136.
|
[47] |
AZIMI S M. ShuffleDet: Real-time vehicle detection network in on-board embedded UAV imagery[C]. 2018 European Conference on Computer Vision Workshops, Munich, Germany, 2019: 88–99.
|
[48] |
TIJTGAT N, VAN RANST W, VOLCKAERT B, et al. Embedded real-time object detection for a UAV warning system[C]. 2017 IEEE International Conference on Computer Vision Workshops, Venice, Italy, 2017: 2110–2118.
|
[49] |
ZHANG Pengyi, ZHONG Yunxin, and LI Xiaoqiong. SlimYOLOv3: Narrower, faster and better for real-time UAV applications[C]. 2019 IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Korea (South), 2019: 37–45.
|
[50] |
HENDRY and CHEN R C. Automatic license plate recognition via sliding-window darknet-YOLO deep learning[J]. Image and Vision Computing, 2019, 87: 47–56. doi: 10.1016/j.imavis.2019.04.007
|
[51] |
TU Renwei, ZHU Zhongjie, BAI Yongqiang, et al. Improved YOLO v3 network-based object detection for blind zones of heavy trucks[J]. Journal of Electronic Imaging, 2020, 29(5): 053002. doi: 10.1117/1.JEI.29.5.053002
|
[52] |
YANG Shuo, ZHANG Junxing, BO Chunjuan, et al. Fast vehicle logo detection in complex scenes[J]. Optics & Laser Technology, 2019, 110: 196–201. doi: 10.1016/j.optlastec.2018.08.007
|
[53] |
YANG Fan, YANG Deming, HE Zhiming, et al. Automobile fine-grained detection algorithm based on multi-improved YOLOv3 in smart streetlights[J]. Algorithms, 2020, 13(5): 114. doi: 10.3390/a13050114
|
[54] |
LI Min, ZHANG Zhijie, LEI Liping, et al. Agricultural greenhouses detection in high-resolution satellite images based on convolutional neural networks: Comparison of faster R-CNN, YOLO v3 and SSD[J]. Sensors, 2020, 20(17): 4938. doi: 10.3390/s20174938
|
[55] |
WU Dihua, LV Shuaichao, JIANG Mei, et al. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments[J]. Computers and Electronics in Agriculture, 2020, 178: 105742. doi: 10.1016/j.compag.2020.105742
|
[56] |
XU Zhifeng, JIA Ruisheng, SUN Hongmei, et al. Light-YOLOv3: Fast method for detecting green mangoes in complex scenes using picking robots[J]. Applied Intelligence, 2020, 50(12): 4670–4687. doi: 10.1007/s10489-020-01818-w
|
[57] |
SHARIF M, AMIN J, SIDDIQA A, et al. Recognition of different types of leukocytes using YOLOv2 and optimized bag-of-features[J]. IEEE Access, 2020, 8: 167448–167459. doi: 10.1109/access.2020.3021660
|
[58] |
ZHUANG Zhemin, LIU Guobao, DING Wanli, et al. Cardiac VFM visualization and analysis based on YOLO deep learning model and modified 2D continuity equation[J]. Computerized Medical Imaging and Graphics, 2020, 82: 101732. doi: 10.1016/j.compmedimag.2020.101732
|
[59] |
KYRKOU C. YOLOpeds: Efficient real-time single-shot pedestrian detection for smart camera applications[J]. IET Computer Vision, 2020, 14(7): 417–425. doi: 10.1049/iet-cvi.2019.0897
|
[60] |
赵斌, 王春平, 付强. 显著性背景感知的多尺度红外行人检测方法[J]. 电子与信息学报, 2020, 42(10): 2524–2532. doi: 10.11999/JEIT190761
ZHAO Bin, WANG Chunping, and FU Qiang. Multi-scale pedestrian detection in infrared images with salient background-awareness[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2524–2532. doi: 10.11999/JEIT190761
|
[61] |
KRIŠTO M, IVASIC-KOS M, and POBAR M. Thermal object detection in difficult weather conditions using YOLO[J]. IEEE Access, 2020, 8: 125459–125476. doi: 10.1109/access.2020.3007481
|
[62] |
LIU Peng, SONG Changlin, LI Junmin, et al. Detection of transmission line against external force damage based on improved YOLOv3[J]. International Journal of Robotics and Automation, 2020, 35(6): 460–468.
|
[63] |
XIE Yiqun, CAI Jiannan, BHOJWANI R, et al. A locally-constrained YOLO framework for detecting small and densely-distributed building footprints[J]. International Journal of Geographical Information Science, 2020, 34(4): 777–801. doi: 10.1080/13658816.2019.1624761
|
[64] |
LUO Yanyang, SHAO Yanhua, CHU Hongyu, et al. CNN-based blade tip vortex region detection in flow field[C]. SPIE 11373, Eleventh International Conference on Graphics and Image Processing (ICGIP 2019), Hangzhou, China, 2020: 113730P.
|