Advanced Search
Volume 44 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
CHEN Xinying, SHENG Min, LI Bo, ZHAO Nan. Survey on Unmanned Aerial Vehicle Communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781-789. doi: 10.11999/JEIT210789
Citation: CHEN Xinying, SHENG Min, LI Bo, ZHAO Nan. Survey on Unmanned Aerial Vehicle Communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781-789. doi: 10.11999/JEIT210789

Survey on Unmanned Aerial Vehicle Communications for 6G

doi: 10.11999/JEIT210789
Funds:  The National Key R&D Program of China (2020YFB1807002)
  • Received Date: 2021-08-06
  • Rev Recd Date: 2021-10-22
  • Available Online: 2021-11-04
  • Publish Date: 2022-03-28
  • Although the application of the fifth-Generation (5G) mobile communication has brought tremendous innovations to the daily life of human beings, e.g., autonomous vehicles and internet of everything, the upcoming huger data requirement leads to the emergence of the sixth-Generation (6G) mobile communication. Compared to 5G, the transmission rate, time delay, and wireless coverage need to be improved significantly. Thus, in this paper the applications of Unmanned Aerial Vehicles (UAVs) to the ubiquitous, intelligent and coupling 6G network are surveyed. First, the utilization of UAVs in the framework of space-air-ground-sea integrated network is demonstrated, and the roles and functions of UAVs in different scenarios are emphasized, e.g., the swarm base stations, the deployment for holographic projection, the long-distance relaying and the data collection. Then, the potential 6G key techniques of terahertz, ultra-massive multiple-input and multiple-output, endogenous artificial intelligence, Intelligent Reflecting Surface (IRS), intelligent edge computing, blockchain and integrated sensing and communication for UAV communications are investigated. Finally, the future challenges of UAV communications for 6G, including the limited duration, integration of networks, compatibility of IRS, development of THz communications, and user security are discussed.
  • loading
  • [1]
    尤肖虎, 潘志文, 高西奇, 等. 5G移动通信发展趋势与若干关键技术[J]. 中国科学:信息科学, 2014, 44(5): 551–563. doi: 10.1360/N112014-00032

    YOU Xiaohu, PAN Zhiwen, GAO Xiqi, et al. The 5G mobile communication: The development trends and its emerging key techniques[J]. Scientia Sinica Informationis, 2014, 44(5): 551–563. doi: 10.1360/N112014-00032
    [2]
    LYU Feng, CHENG Nan, ZHU Hongzi, et al. Intelligent context-aware communication paradigm design for IoVs based on data analytics[J]. IEEE Network, 2018, 32(6): 74–82. doi: 10.1109/MNET.2018.1800067
    [3]
    GUAN Yueshi, WANG Yijie, BIAN Qing, et al. High-efficiency self-driven circuit with parallel branch for high frequency converters[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 926–931. doi: 10.1109/TPEL.2017.2724545
    [4]
    Cisco System. Cosic visual networking index: Global mobile data traffic forecast update, 2017–2022 white paper[S]. 2019.
    [5]
    赛迪智库无线管理研究所. 6G概念及愿景白皮书[N]. 中国计算机报, 2020-05-11(008). doi: 10.28468/n.cnki.njsjb.2020.000054.
    [6]
    张平, 牛凯, 田辉, 等. 6G移动通信技术展望[J]. 通信学报, 2019, 40(1): 141–148. doi: 10.11959/j.issn.1000-436x.2019022

    ZHANG Ping, NIU Kai, TIAN Hui, et al. Technology prospect of 6G mobile communications[J]. Journal on Communications, 2019, 40(1): 141–148. doi: 10.11959/j.issn.1000-436x.2019022
    [7]
    谢莎, 李浩然, 李玲香, 等. 面向6G网络的太赫兹通信技术研究综述[J]. 移动通信, 2020, 44(6): 36–43. doi: 10.3969/j.issn.1006-1010.2020.06.006

    XIE Sha, LI Haoran, LI Lingxiang, et al. A survey of terahertz communication technologies for 6G networks[J]. Mobile Communications, 2020, 44(6): 36–43. doi: 10.3969/j.issn.1006-1010.2020.06.006
    [8]
    CHEN Shuaifei, ZHANG Jiayi, JIN Yu, et al. Wireless powered IoE for 6G: Massive access meets scalable cell-free massive MIMO[J]. China Communications, 2020, 17(12): 92–109. doi: 10.23919/JCC.2020.12.007
    [9]
    LONG Wenxuan, CHEN Rui, MARCO M, et al. A promising technology for 6G wireless networks: Intelligent refl ecting surface[J]. Journal of Communications and Information Networks, 2021, 6(1): 1–16. doi: 10.23919/JCIN.2021.9387701
    [10]
    LETAIEF K B, CHEN Wei, SHI Yuanming, et al. The roadmap to 6G: AI empowered wireless networks[J]. IEEE Communications Magazine, 2019, 57(8): 84–90. doi: 10.1109/MCOM.2019.1900271
    [11]
    ZHAO Nan, LU Weidang, SHENG Min, et al. UAV-assisted emergency networks in disasters[J]. IEEE Wireless Communications, 2019, 26(1): 45–51. doi: 10.1109/MWC.2018.1800160
    [12]
    CHEN Xinying, LI Dongdong, YANG Zhutian, et al. Securing aerial-ground transmission for NOMA-UAV networks[J]. IEEE Network, 2020, 34(6): 171–177. doi: 10.1109/MNET.011.2000101
    [13]
    WANG Jun, NA Zhenyu, and LIU Xin. Collaborative design of multi-UAV trajectory and resource scheduling for 6G-enabled internet of things[J]. IEEE Internet of Things Journal, 2021, 8(20): 15096–15106. doi: 10.1109/JIOT.2020.3031622
    [14]
    刘超, 陆璐, 王硕, 等. 面向空天地一体多接入的融合6G网络架构展望[J]. 移动通信, 2020, 44(6): 116–120. doi: 10.3969/j.issn.1006-1010.2020.06.017

    LIU Chao, LU Lu, WANG Shuo, et al. Prospects for a multi-access air-space-terrestrial integrated 6G network architecture[J]. Mobile Communications, 2020, 44(6): 116–120. doi: 10.3969/j.issn.1006-1010.2020.06.017
    [15]
    KHUWAJA A A, CHEN Yunfei, ZHAO Nan, et al. A survey of channel modeling for UAV communications[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2804–2821. doi: 10.1109/COMST.2018.2856587
    [16]
    DUO Bin, WU Qingqing, YUAN Xiaojun, et al. Anti-jamming 3D trajectory design for UAV-enabled wireless sensor networks under probabilistic LoS channel[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 16288–16293. doi: 10.1109/TVT.2020.3040334
    [17]
    COSTANTINO D, ANGELINI M G, and VOZZA G. The engineering and assembly of a low cost UAV[C]. Proceedings of 2015 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 2015: 351–355. doi: 10.1109/MetroAeroSpace.2015.7180681.
    [18]
    DAI Cuiqin, ZHANG Mingjian, LI Chong, et al. QoE-aware intelligent satellite constellation design in satellite internet of things[J]. IEEE Internet of Things Journal, 2021, 8(6): 4855–4867. doi: 10.1109/JIOT.2020.3030263
    [19]
    ZHU Xiangming, JIANG Chunxiao, KUANG Linling, et al. Cooperative transmission in integrated terrestrial-satellite networks[J]. IEEE Network, 2019, 33(3): 204–210. doi: 10.1109/MNET.2018.1800164
    [20]
    SHAFIQUE T, TABASSUM H, and HOSSAIN E. Optimization of wireless relaying with flexible UAV-borne reflecting surfaces[J]. IEEE Transactions on Communications, 2021, 69(1): 309–325. doi: 10.1109/TCOMM.2020.3032700
    [21]
    NA Zhenyu, LIU Yue, SHI Jingcheng, et al. UAV-supported clustered NOMA for 6G-enabled internet of things: Trajectory planning and resource allocation[J]. IEEE Internet of Things, 2021, 8(20): 15041–15048. doi: 10.1109/JIOT.2020.3004432
    [22]
    ZHANG Shuhang, ZHANG Hongliang, and SONG Lingyang. Beyond D2D: Full dimension UAV-to-everything communications in 6G[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6592–6602. doi: 10.1109/TVT.2020.2984624
    [23]
    ZHANG Xi, WANG Jingqing, and POOR H V. Vincent. AoI-driven statistical delay and error-rate bounded QoS provisioning for mURLLC Over UAV-multimedia 6G mobile networks using FBC[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3425–3433. doi: 10.1109/JSAC.2021.3088625
    [24]
    CHANG Hengtai, WANG Chengxiang, LIU Yu, et al. A novel nonstationary 6G UAV-to-ground wireless channel model with 3-D arbitrary trajectory changes[J]. IEEE Internet of Things Journal, 2020, 8(12): 9865–9877. doi: 10.1109/JIOT.2020.3018479
    [25]
    SAEED A, GURBUZ O, BICEN A O, et al. Variable-bandwidth model and capacity analysis for aerial communications in the terahertz band[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1768–1784. doi: 10.1109/JSAC.2021.3071831
    [26]
    CHENG Hai, BERTIZZOLO L, D’ORO S, et al. Learning to fly: A distributed deep reinforcement learning framework for software-defined UAV network control[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1486–1504. doi: 10.1109/OJCOMS.2021.3092690
    [27]
    GUPTA R, SHUKLA A, and TANWAR S. BATS: A blockchain and ai-empowered drone-assisted telesurgery system towards 6G[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(4): 2958–2967. doi: 10.1109/TNSE.2020.3043262.
    [28]
    JIANG Xu, CHEN Xinying, TANG Jie, et al. Covert communication in UAV-assisted air-ground networks[J]. IEEE Wireless Communications, 2021, 28(4): 190–197. doi: 10.1109/MWC.001.2000454
    [29]
    CHEN Zhi, MA Xinying, ZHANG Bo, et al. A survey on terahertz communications[J]. China Communications, 2019, 16(2): 1–35. doi: 10.12676/j.cc.2019.02.001
    [30]
    ZHANG Senjie, JIN Shi, WEN Chaokai, et al. Improving expectation propagation with lattice reduction for massive MIMO detection[J]. China Communications, 2018, 15(12): 49–54. doi: 10.12676/j.cc.2018.12.003
    [31]
    AKYILDIZ I F and JORNET J M. Realizing ultra-massive MIMO (1024×1024) communication in the (0.06–10) terahertz band[J]. Nano Communication Networks, 2016, 8: 46–54. doi: 10.1016/j.nancom.2016.02.001
    [32]
    ZHANG Chuan, UENG Y L, STUDER C, et al. Artificial intelligence for 5G and beyond 5G: Implementations, algorithms, and optimizations[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(2): 149–163. doi: 10.1109/JETCAS.2020.3000103
    [33]
    WANG Hong, LIU Chen, SHI Zheng, et al. On power minimization for IRS-aided downlink NOMA systems[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1808–1811. doi: 10.1109/LWC.2020.2999097
    [34]
    XIE Ziwen, LIU Junyu, SHENG Min, et al. Exploiting aerial computing for air-to-ground coverage enhancement[J]. IEEE Wireless Communications.
    [35]
    JIANG Xu, SHENG Min, ZHAO Nan, et al. Green UAV communications for 6G: A survey[J]. Chinese Journal of Aeronautics, 2021. doi: 10.1016/j.cja.2021.04.025.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (7064) PDF downloads(1821) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return