Citation: | LI Lianwei, QIN Shiyin. Real-time Detection of Hiding Contraband in Human Body During the Security Check Based on Lightweight U-Net with Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3435-3446. doi: 10.11999/JEIT210787 |
[1] |
冯辉, 涂昊, 高炳西, 等. 被动毫米波太赫兹人体成像关键技术进展[J]. 激光与红外, 2020, 50(11): 1395–1401. doi: 10.3969/j.issn.1001-5078.2020.11.018
FENG Hui, TU Hao, GAO Bingxi, et al. Progress on key technologies of passive millimeter wave and terahertz imaging for human body screening[J]. Laser &Infrared, 2020, 50(11): 1395–1401. doi: 10.3969/j.issn.1001-5078.2020.11.018
|
[2] |
SANDLER M, HOWARD A, ZHU Menglong, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, America, 2018: 4510–4520.
|
[3] |
LÓPEZ-TAPIA S, MOLINA R, and DE LA BLANCA N P. Using machine learning to detect and localize concealed objects in passive millimeter-wave images[J]. Engineering Applications of Artificial Intelligence, 2018, 67: 81–90. doi: 10.1016/j.engappai.2017.09.005
|
[4] |
LÓPEZ-TAPIA S, MOLINA R, and DE LA BLANCA N P. Deep CNNs for object detection using passive millimeter sensors[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(9): 2580–2589. doi: 10.1109/TCSVT.2017.2774927
|
[5] |
PANG Lei, LIU Hui, CHEN Yang, et al. Real-time concealed object detection from passive millimeter wave images based on the YOLOv3 algorithm[J]. Sensors, 2020, 20(6): 1678. doi: 10.3390/s20061678
|
[6] |
LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, America, 2015: 3431–3440.
|
[7] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
|
[8] |
罗会兰, 卢飞, 孔繁胜. 基于区域与深度残差网络的图像语义分割[J]. 电子与信息学报, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056
LUO Huilan, LU Fei, and KONG Fansheng. Image semantic segmentation based on region and deep residual network[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056
|
[9] |
ZHU Lanyun, JI Deyi, ZHU Shiping, et al. Learning statistical texture for semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, America, 2021: 12532–12541,
|
[10] |
FU Yabo, LEI Yang, WANG Tonghe, et al. Deep learning in medical image registration: A review[J]. Physics in Medicine & Biology, 2020, 65(20): 20TR01. doi: 10.1088/1361-6560/ab843e
|
[11] |
CAO Xiaohuan, YANG Jianhua, ZHANG Jun, et al. Deformable image registration using a cue-aware deep regression network[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(9): 1900–1911. doi: 10.1109/TBME.2018.2822826
|
[12] |
MOK T C W and CHUNG A C S. Fast symmetric diffeomorphic image registration with convolutional neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, America, 2020: 4643–4652.
|
[13] |
KIM B, KIM D H, PARK S H, et al. CycleMorph: Cycle consistent unsupervised deformable image registration[J]. Medical Image Analysis, 2021, 71: 102036. doi: 10.1016/j.media.2021.102036
|
[14] |
BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: A learning framework for deformable medical image registration[J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 1788–1800. doi: 10.1109/TMI.2019.2897538
|
[15] |
MA Yingjun, NIU Dongmei, ZHANG Jinshuo, et al. Unsupervised deformable image registration network for 3D medical images[J]. Applied Intelligence, 2022, 52(1): 766–779. doi: 10.1007/s10489-021-02196-7
|
[16] |
HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. https://arxiv.org/abs/1704.04861, 2017.
|
[17] |
HE Kaiming, ZHANG Xingyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. IEEE conference on computer vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[18] |
BREHERET A. Pixel annotation tool[EB/OL]. https://github.com/abreheret/PixelAnnotationTool, 2017.
|
[19] |
SOKOOTI H, DE VOS B, BERENDSEN F, et al. Nonrigid image registration using multi-scale 3D convolutional neural networks[C]. 20th International Conference on Medical Image Computing and Computer Assisted Intervention, Quebec City, Canada, 2017: 232–239.
|
[20] |
JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 2017–2025. doi: 10.5555/2969442.2969465.
|
[21] |
BADRINARAYANAN V, KENDALL A, and CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495. doi: 10.1109/TPAMI.2016.2644615
|
[22] |
DICE L R. Measures of the amount of ecologic association between species[J]. Ecology, 1945, 26(3): 297–302. doi: 10.2307/1932409
|