Citation: | SUN Junmei, GE Qingqing, LI Xiumei, ZHAO Baoqi. A Medical Image Segmentation Network with Boundary Enhancement[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1643-1652. doi: 10.11999/JEIT210784 |
[1] |
GENG Qichuan, ZHOU Zhong, and CAO Xiaochun. Survey of recent progress in semantic image segmentation with CNNs[J]. Science China Information Sciences, 2018, 61(5): 051101. doi: 10.1007/s11432-017-9189-6
|
[2] |
ANWAR S M, MAJID M, QAYYUM A, et al. Medical image analysis using convolutional neural networks: A review[J]. Journal of Medical Systems, 2018, 42(11): 226. doi: 10.1007/s10916-018-1088-1
|
[3] |
徐莹莹, 沈红斌. 基于模式识别的生物医学图像处理研究现状[J]. 电子与信息学报, 2020, 42(1): 201–213. doi: 10.11999/JEIT190657
XU Yingying and SHEN Hongbin. Review of research on biomedical image processing based on pattern recognition[J]. Journal of Electronics &Information Technology, 2020, 42(1): 201–213. doi: 10.11999/JEIT190657
|
[4] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
|
[5] |
SHANKARANARAYANA S M, RAM K, MITRA K, et al. Joint optic disc and cup segmentation using fully convolutional and adversarial networks[C]. International Workshop on Ophthalmic Medical Image Analysis, Québec City, Canada, 2017: 168–176.
|
[6] |
OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: Learning where to look for the pancreas[EB/OL]. https://arxiv.org/abs/1804.03999.pdf, 2021.
|
[7] |
ZHOU Zongwei, SIDDIQUEE M R, TAJBAKHSH N, et al. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856–1867. doi: 10.1109/TMI.2019.2959609
|
[8] |
JAFARI M, AUER D, FRANCIS S, et al. DRU-Net: An efficient deep convolutional neural network for medical image segmentation[C]. The 2020 IEEE 17th International Symposium on Biomedical Imaging, Iowa City, USA, 2020: 1144–1148.
|
[9] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[10] |
HUANG Zehao and WANG Naiyan. Like what you like: Knowledge distill via neuron selectivity transfer[EB/OL]. https://arxiv.org/abs/1707.01219.pdf, 2021.
|
[11] |
LI Ziqiang, PAN Hong, ZHU Yaping, et al. PGD-UNet: A position-guided deformable network for simultaneous segmentation of organs and tumors[C]. 2020 International Joint Conference on Neural Networks, Glasgow, UK, 2020: 1–8.
|
[12] |
KITRUNGROTSAKUL T, YUTARO I, LIN Lanfen, et al. Interactive deep refinement network for medical image segmentation[EB/OL]. https://arxiv.org/pdf/2006.15320.pdf, 2021.
|
[13] |
ZHANG Zhijie, FU Huazhu, DAI Hang, et al. ET-Net: A Generic edge-aTtention guidance network for medical image segmentation[C]. The 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 2019: 442–450.
|
[14] |
VALANARASU J M J, SINDAGI V A, HACIHALILOGLU I, et al. KiU-Net: Towards accurate segmentation of biomedical images using over-complete representations[C]. The 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 2020: 363–373.
|
[15] |
LEE H J, KIM J U, LEE S, et al. Structure boundary preserving segmentation for medical image with ambiguous boundary[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 4816–4825.
|
[16] |
CHU Jiajia, CHEN Yajie, ZHOU Wei, et al. Pay more attention to discontinuity for medical image segmentation[C]. The 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 2020: 166–175.
|
[17] |
BAHETI B, INNANI S, GAJRE S, et al. Eff-UNet: A novel architecture for semantic segmentation in unstructured environment[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2020: 1473–1481.
|
[18] |
TREBING K, STAǸCZYK T, and MEHRKANOON S. SmaAT-UNet: Precipitation nowcasting using a small attention-UNet architecture[J]. Pattern Recognition Letters, 2021, 145: 178–186. doi: 10.1016/j.patrec.2021.01.036
|
[19] |
QAMAR S, JIN Hai, ZHENG Ran, et al. A variant form of 3D-UNet for infant brain segmentation[J]. Future Generation Computer Systems, 2020, 108: 613–623. doi: 10.1016/j.future.2019.11.021
|
[20] |
GADOSEY P K, LI Yujian, AGYEKUM E A, et al. SD-UNet: Stripping down U-Net for segmentation of biomedical images on platforms with low computational budgets[J]. Diagnostics, 2020, 10(2): 110. doi: 10.3390/diagnostics10020110
|
[21] |
SUN J, DARBEHANI F, ZAIDI M, et al. SAUNet: Shape attentive U-Net for interpretable medical image segmentation[C]. The 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 2020: 797–806.
|
[22] |
TAKIKAWA T, ACUNA D, JAMPANI V, et al. Gated-SCNN: Gated shape CNNS for semantic segmentation[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 5228–5237.
|
[23] |
HEIDLER K, MOU Lichao, BAUMHOER C, et al. HED-UNet: Combined segmentation and edge detection for monitoring the Antarctic coastline[EB/OL]. https://arxiv.org/abs/2103.01849v1.pdf, 2021.
|
[24] |
JADON S. A survey of loss functions for semantic segmentation[C]. 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, Via del Mar, Chile, 2020: 1–7.
|
[25] |
KERVADEC H, BOUCHTIBA J, DESROSIERS C, et al. Boundary loss for highly unbalanced segmentation[J]. Medical Image Analysis, 2021, 67: 101851. doi: 10.1016/j.media.2020.101851
|
[26] |
ROY A G, NAVAB N, and WACHINGER C. Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks[C]. The 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 2018: 421–429.
|
[27] |
CODELLA N, ROTEMBERG V, TSCHANDL P, et al. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC)[EB/OL]. https://arxiv.org/abs/1902.03368.pdf, 2021.
|
[28] |
TSCHANDL P, ROSENDAHL C, and KITTLER H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[J]. Scientific Data, 2018, 5: 180161. doi: 10.1038/sdata.2018.161
|
[29] |
MILLETARI F, NAVAB N, and AHMADI S A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation[C]. The 2016 4th International Conference on 3D Vision, Stanford, USA, 2016: 565–571.
|
[30] |
ATTOUCH H, LUCCHETTI R, and WETS R J B. The topology of the ρ-hausdorff distance[J]. Annali di Matematica Pura ed Applicata, 1991, 160(1): 303–320. doi: 10.1007/BF01764131
|