Advanced Search
Volume 44 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
LI Yuanyuan, FU Yaowen, ZHANG Wenpeng, YANG Wei. Distributed ISAR Two-dimensional Imaging of Moving Target with Nonorthogonal Waveforms[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3541-3552. doi: 10.11999/JEIT210775
Citation: LI Yuanyuan, FU Yaowen, ZHANG Wenpeng, YANG Wei. Distributed ISAR Two-dimensional Imaging of Moving Target with Nonorthogonal Waveforms[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3541-3552. doi: 10.11999/JEIT210775

Distributed ISAR Two-dimensional Imaging of Moving Target with Nonorthogonal Waveforms

doi: 10.11999/JEIT210775
Funds:  The National Natural Science Foundation of China (61901487, 61871384)
  • Received Date: 2021-08-04
  • Accepted Date: 2022-03-10
  • Rev Recd Date: 2022-02-01
  • Available Online: 2022-03-20
  • Publish Date: 2022-10-19
  • In distributed Inverse Synthetic Aperture Radar (ISAR) imaging, if the transmitted waveforms are nonorthogonal, it is difficult to obtain the ideal range image by the traditional matched filtering method, which will affect the azimuth imaging effect. Sparse-based method can replace matched filtering in range profile separation. In this paper, after describing the sparse representation model of range image in a single snapshot, by adjusting the delay of the transmitting and receiving sensors, the range image with multiple receiving sensors can have joint-block sparse characteristics. Then, a Multiple Measurement Vectors Joint Block (MMV-JBlock) algorithm is constructed using Sequential Order One Negative Exponential (SOONE) function to improve the effect of sparse reconstruction. For multiple snapshots, the MMV-JBlock method is used to separate the range image at each snapshot firstly. After aligning the multi-channel range images, the uninterested directional motion and error items in the azimuth phase are compensated. Finally, the sparse method is used to obtain the target azimuth image. The simulation verifies the reconstruction performance of the proposed algorithm under different sparsity and different signal-to-noise ratios, and achieves the imaging of moving targets by distributed ISAR, which validates the effectiveness of the proposed method.
  • loading
  • [1]
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 7–8.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Electronic Industry Press, 2005: 7–8.
    [2]
    PASTINA D, BUCCIARELLI M, and LOMBARDO P. Multistatic and MIMO distributed ISAR for enhanced cross-range resolution of rotating targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8): 3300–3317. doi: 10.1109/TGRS.2010.2043740
    [3]
    朱宇涛, 郁文贤, 粟毅. 一种基于MIMO技术的ISAR成像方法[J]. 电子学报, 2009, 37(9): 1885–1894. doi: 10.3321/j.issn:0372-2112.2009.09.003

    ZHU Yutao, YU Wenxian, and SU Yi. An ISAR imaging method based on MIMO technique[J]. Acta Electronica Sinica, 2009, 37(9): 1885–1894. doi: 10.3321/j.issn:0372-2112.2009.09.003
    [4]
    董会旭, 张永顺, 冯存前, 等. 基于线阵的MIMO-ISAR二维成像方法[J]. 电子与信息学报, 2015, 37(2): 309–314. doi: 10.11999/JEIT140529

    DONG Huixu, ZHANG Yongshun, FENG Cunqian, et al. Two-dimensional imaging using MIMO radar and ISAR technique based on linear array[J]. Journal of Electronics &Information Technology, 2015, 37(2): 309–314. doi: 10.11999/JEIT140529
    [5]
    唐远航. 分布式雷达高分辨成像方法研究[D]. [硕士论文], 中国科学技术大学, 2018.

    TANG Yuanhang. Research on high resolution imaging method of distributed radar system[D]. [Master dissertation], University of Science and Technology of China, 2018.
    [6]
    朱宇涛, 粟毅. 一种M2N2收MIMO雷达平面阵列及其三维成像方法[J]. 中国科学:信息科学, 2011, 41(12): 1495–1506. doi: 10.1360/zf2011-41-12-1495

    ZHU Yutao and SU Yi. A type of M2-transmitter N2-receiver MIMO radar array and 3D imaging theory[J]. Scientia Sinica Informationis, 2011, 41(12): 1495–1506. doi: 10.1360/zf2011-41-12-1495
    [7]
    郑通, 蒋李兵, 王壮. 基于多快拍图像联合的MIMO雷达三维成像方法[J]. 雷达学报, 2020, 9(4): 739–752. doi: 10.12000/JR19069

    ZHENG Tong, JIANG Libing, and WANG Zhuang. Three-dimensional Multiple-Input Multiple-Output radar imaging method based on integration of multi-snapshot images[J]. Journal of Radars, 2020, 9(4): 739–752. doi: 10.12000/JR19069
    [8]
    MA Changzheng, YEO T S, ZHAO Yongbo, et al. MIMO radar 3D imaging based on combined amplitude and total variation cost function with sequential order one negative exponential form[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2168–2183. doi: 10.1109/TIP.2014.2311735
    [9]
    MA Changzheng, YEO T S, LIU Zhoufeng, et al. Target imaging based on ℓ10 norms homotopy sparse signal recovery and distributed MIMO antennas[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3399–3414. doi: 10.1109/TAES.2015.140939
    [10]
    KANG Hailong, LI Jun, LI Han, et al. High sidelobe analysis and reduction in multistatic inverse synthetic aperture radar imaging fusion with gapped data[J]. IET Radar, Sonar & Navigation. 2019, 13(7): 1200–1206.
    [11]
    WANG Yong and LI Xuelu. 3-D Imaging based on combination of the ISAR technique and a MIMO radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 6033–6054. doi: 10.1109/TGRS.2018.2829912
    [12]
    蒲涛, 童宁宁, 冯为可, 等. 基于块稀疏矩阵恢复的MIMO雷达扩展目标高分辨成像算法[J]. 系统工程与电子技术, 2021, 43(3): 647–655. doi: 10.12305/j.issn.1001-506X.2021.03.07

    PU Tao, TONG Ningning, FENG Weike, et al. Extended target high resolution imaging algorithm for MIMO radar based on block sparse matrix recovery[J]. Systems Engineering and Electronics, 2021, 43(3): 647–655. doi: 10.12305/j.issn.1001-506X.2021.03.07
    [13]
    胡晓伟. 基于稀疏理论的MIMO雷达运动目标3维成像方法研究[D]. [博士论文], 空军工程大学, 2016.

    HU Xiaowei. Research on MIMO radar moving target 3D imaging method based on compression sensing[D]. [Ph. D. dissertation], Air Force Engineering University, 2016.
    [14]
    HU Xiaowei, TONG Ningning, ZHANG Yongshun, et al. MIMO radar imaging with nonorthogonal waveforms based on joint-block sparse recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5985–5996. doi: 10.1109/TGRS.2018.2829403
    [15]
    陈桥, 童宁宁, 胡晓伟, 等. 基于多观测向量块稀疏的MIMO雷达非理想正交波形成像[J]. 系统工程与电子技术, 2020, 42(12): 2747–2754. doi: 10.3969/j.issn.1001-506X.2020.12.10

    CHEN Qiao, TONG Ningning, HU Xiaowei, et al. Non-ideal orthogonal waveforms imaging of MIMO radar based on multiple measurement vector block sparse algorithm[J]. Systems Engineering and Electronics, 2020, 42(12): 2747–2754. doi: 10.3969/j.issn.1001-506X.2020.12.10
    [16]
    李宗浩. MIMO雷达信号设计与特性研究[D]. [硕士论文], 西安电子科技大学, 2017.

    LI Zonghao. Waveform design for MIMO radar and research on echo characteristics[D]. [Master dissertation], Xidian University, 2017.
    [17]
    SU Junling, JIANG Weidong, and TIAN Biao. Fast velocity estimation based on minimum entropy and newton iteration in MIMO-ISAR imaging[C]. 2020 IEEE International Conference on Artificial intelligence and Computer Applications, Dalian, China, 2020: 296–301.
    [18]
    MOHIMANI H, BABAIE-ZADEH M, and JUTTEN C. A fast approach for overcomplete sparse decomposition based on smoothed 0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289–301. doi: 10.1109/TSP.2008.2007606
    [19]
    李康乐. 雷达目标微动特征提取与估计技术研究[D]. [博士论文], 国防科技大学, 2010.

    LI Kangle. Research on feature extraction and parameters estimation for radar targets with micro-motions[D]. [Ph. D. dissertation], National University of Defense Technology, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (416) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return