Advanced Search
Volume 44 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
YANG Hongjuan, SHI Tongzhi, LI Bo, ZHAO Nan, WANG Gang. Research on Satellite Single-mixed Signal Modulation Recognition Based on Joint Feature Parameters[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3499-3506. doi: 10.11999/JEIT210768
Citation: YANG Hongjuan, SHI Tongzhi, LI Bo, ZHAO Nan, WANG Gang. Research on Satellite Single-mixed Signal Modulation Recognition Based on Joint Feature Parameters[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3499-3506. doi: 10.11999/JEIT210768

Research on Satellite Single-mixed Signal Modulation Recognition Based on Joint Feature Parameters

doi: 10.11999/JEIT210768
Funds:  The National Natural Science Foundation of China (62171154, 61901137), The Natural Science Foundation of Shandong Province (ZR2020MF007), The Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology (2018B030322004)
  • Received Date: 2021-08-02
  • Rev Recd Date: 2021-09-06
  • Available Online: 2021-09-17
  • Publish Date: 2022-10-19
  • In order to tackle the problem of single-mixed signal modulation type recognition with low efficiency and poor accuracy in satellite communication, based on clustering characteristics of constellation and high order cumulants, a joint algorithm is proposed. Firstly, three characteristic parameters is constructed with the utilization of the 4th and 6th order cumulants to identify Multiple Phase Shift Keying (MPSK) and partial Multiple Quadrature Amplitude Modulation (MQAM) modulation types, then the improved constellation subtraction clustering algorithm is combined to separate the remaining modulation patterns, At last, the parameters are integrated to establish a decision tree classifier for unified scheduling. By adopting the method of this article, many signals without prior knowledge are unnecessarily required, and meanwhile the proposed approach maintains the characteristics of simple feature extraction parameters and multiple recognition types. The simulation experiments demonstrate that the associated algorithm is still able to achieve the validity of more than 90%, in the circumstance of the satellite single-mixed signals possessing a Signal-to-Noise Ratio (SNR) of 10 dB.
  • loading
  • [1]
    张天骐, 范聪聪, 葛宛营, 等. 基于ICA和特征提取的MIMO信号调制识别算法[J]. 电子与信息学报, 2020, 42(9): 2208–2215. doi: 10.11999/JEIT190320

    ZHANG Tianqi, FAN Congcong, GE Wanying, et al. MIMO signal modulation recognition algorithm based on ICA and feature extraction[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2208–2215. doi: 10.11999/JEIT190320
    [2]
    WANG Tuo, HOU Yonghong, ZHANG Haoyuan, et al. Deep learning based modulation recognition with multi-cue fusion[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1757–1760. doi: 10.1109/LWC.2021.3078878
    [3]
    DANKBERG M. Paired carrier multiple access (PCMA) for satellite communications[C]. 17th AIAA International Communications Satellite Systems Conference and Exhibit, Yokohama, Japan, 1998: 787–791.
    [4]
    LUO Zhongqiang, ZHU Lidong, LI Chengjie, et al. Blind extraction for PCMA downlink mixed signals using guided signature[C]. 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 2018: 1218–1222. doi: 10.1109/CompComm.2018.8780845.
    [5]
    廖灿辉, 万坚, 周世东. 利用累积量和似然特征的卫星单-混信号调制识别算法[J]. 电讯技术, 2010, 50(7): 44–48. doi: 10.3969/j.issn.1001-893x.2010.07.010

    LIAO Canhui, WAN Jian, and ZHOU Shidong. Modulation classification algorithm for satellite single-mixed signals using cumulants and likehood features[J]. Telecommunication Engineering, 2010, 50(7): 44–48. doi: 10.3969/j.issn.1001-893x.2010.07.010
    [6]
    彭闯, 杨晓静, 蔡晓霞. 卫星单-混信号识别研究[J]. 火力与指挥控制, 2019, 44(8): 29–33, 40.

    PENG Chuang, YANG Xiaojing, and CAI Xiaoxia. Research on identification of satellite single-mixed signals[J]. Fire Control &Command Control, 2019, 44(8): 29–33, 40.
    [7]
    贾子欣, 陈卫东, 杨松. PCMA信号调制识别研究[J]. 电子测量技术, 2020, 43(20): 133–138.

    JIA Zixin, CHEN Weidong, and YANG Song. Research on PCMA signal modulation recognition[J]. Electronic Measurement Technology, 2020, 43(20): 133–138.
    [8]
    ZENG Yuan, ZHANG Meng, HAN Fei, et al. Spectrum analysis and convolutional neural network for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2019, 8(3): 929–932. doi: 10.1109/LWC.2019.2900247
    [9]
    HONG Dehua, ZHANG Zilong, and XU Xiaodong. Automatic modulation classification using recurrent neural networks[C]. 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 2017: 695–700. doi: 10.1109/CompComm.2017.8322633.
    [10]
    ZHANG Duona, DING Wenrui, ZHANG Baochang, et al. Automatic modulation classification based on deep learning for unmanned aerial vehicles[J]. Sensors, 2018, 18(3): 924. doi: 10.3390/s18030924
    [11]
    NURSIAGA R and ALAYDRUS M. Efficiency of satellite transponder using paired carrier multiple access with low density parity check[C]. 2019 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Tangerang, Indonesia, 2019: 109–112. doi: 10.1109/ICRAMET47453.2019.8980423.
    [12]
    SWAMI A and SADLER B M. Hierarchical digital modulation classification using cumulants[J]. IEEE Transactions on Communications, 2000, 48(3): 416–429. doi: 10.1109/26.837045
    [13]
    LIU Qianyu, KWONG C F, ZHANG Sibo, et al. A fuzzy-clustering based approach for MADM handover in 5G ultra-dense networks[J]. Wireless Networks, 2022, 28(2): 965–978. doi: 10.1007/s11276-019-02130-3.
    [14]
    JAJOO G, KUMAR Y, and YADAV S K. Blind signal PSK/QAM recognition using clustering analysis of constellation signature in flat fading channel[J]. IEEE Communications Letters, 2019, 23(10): 1853–1856. doi: 10.1109/LCOMM.2019.2929127
    [15]
    ASLAM M W, ZHU Zhechen, and NANDI A K. Automatic modulation classification using combination of genetic programming and KNN[J]. IEEE Transactions on Wireless Communications, 2012, 11(8): 2742–2750. doi: 10.1109/TWC.2012.060412.110460
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views (1190) PDF downloads(165) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return