Advanced Search
Volume 44 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
LIU Ke, YANG Dong, DENG Xin. EEG Source Imaging Based on fMRI Functional Network and Bayesian Matrix Decomposition[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3447-3457. doi: 10.11999/JEIT210764
Citation: LIU Ke, YANG Dong, DENG Xin. EEG Source Imaging Based on fMRI Functional Network and Bayesian Matrix Decomposition[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3447-3457. doi: 10.11999/JEIT210764

EEG Source Imaging Based on fMRI Functional Network and Bayesian Matrix Decomposition

doi: 10.11999/JEIT210764
Funds:  The National Natural Science Foundation of China (61703065), Chongqing Research Program of Application Foundation and Advanced Technology (cstc2018jcyjAX0151), The Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0284), The Scientific and Technological Research Program of Chongqing (CQ) Municipal Education Commission (KJQN202000625)
  • Received Date: 2021-08-02
  • Accepted Date: 2022-01-12
  • Rev Recd Date: 2022-01-07
  • Available Online: 2022-02-18
  • Publish Date: 2022-10-19
  • ElectroEncephaloGraphy (EEG) is an important brain functional imaging technology. The task to reconstruct cortical activities based on the scalp EEG is called EEG source imaging. However, the accurate reconstruction of the locations and sizes of brain source activity remains a challenge. To employ fully the spatiotemporal complementary information of EEG and functional Magnetic Resonance Imaging (fMRI), a new EEG source imaging algorithm, i.e., FN-STCSI (Functional Network based Spatio-Temporal Constrains Source Imaging) is proposed. Specifically, to make full use of the temporal information of EEG signals, the source signal matrix is decomposed into a linear combination of several time basis functions based on the idea of matrix decomposition. Additionally, to fuse the high spatial resolution information of fMRI, FN-STCSI employes independent component analysis to extract the fMRI functional networks. Then these fMRI networks are used to construct the spatial covariance basis for EEG source imaging. Variational Bayesian inference techniques are used to determine the relative contribution of each spatial covariance basis to realize EEG-fMRI fusion. Through Monte Carlo numerical simulation and experimental data analysis, FN-STCSI is compared with existing algorithms under different signal-to-noise ratios and different prior conditions. The results show that FN-STCSI can effectively fuse the complementary spatiotemporal information of EEG-fMRI and improve the performance of EEG extended source imaging.
  • loading
  • [1]
    张杨松, 卓彦, 尧德中. 脑电磁成像进展及展望[J]. 中国科学:生命科学, 2020, 50(11): 1268–1284. doi: 10.1360/ssv-2019-0097

    ZHANG Yangsong, ZHUO Yan, and YAO Dezhong. Progresses and prospects of brain electromagnetic imaging[J]. Scientia Sinica Vitae, 2020, 50(11): 1268–1284. doi: 10.1360/ssv-2019-0097
    [2]
    OJEDA A, KREUTZ-DELGADO K, and MULLEN T. Fast and robust Block-Sparse Bayesian learning for EEG source imaging[J]. NeuroImage, 2018, 174: 449–462. doi: 10.1016/j.neuroimage.2018.03.048
    [3]
    HE Bin, SOHRABPOUR A, BROWN E, et al. Electrophysiological source imaging: A noninvasive window to brain dynamics[J]. Annual Review of Biomedical Engineering, 2018, 20: 171–196. doi: 10.1146/annurev-bioeng-062117-120853
    [4]
    HÄMÄLÄINEN M S and ILMONIEMI R J. Interpreting magnetic fields of the brain: Minimum norm estimates[J]. Medical & Biological Engineering & Computing, 1994, 32(1): 35–42. doi: 10.1007/BF02512476
    [5]
    DALE A M and SERENO M I. Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach[J]. Journal of Cognitive Neuroscience, 1993, 5(2): 162–176. doi: 10.1162/jocn.1993.5.2.162
    [6]
    GRECH R, CASSAR T, MUSCAT J, et al. Review on solving the inverse problem in EEG source analysis[J]. Journal of NeuroEngineering and Rehabilitation, 2008, 5(1): 25. doi: 10.1186/1743-0003-5-25
    [7]
    PASCUAL-MARQUI R D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details[J]. Methods and Findings in Experimental and Clinical Pharmacology, 2002, 24(Suppl D): 5–12.
    [8]
    FRISTON K, HARRISON L, DAUNIZEAU J, et al. Multiple sparse priors for the M/EEG inverse problem[J]. NeuroImage, 2008, 39(3): 1104–1120. doi: 10.1016/j.neuroimage.2007.09.048
    [9]
    CHOWDHURY R A, LINA J M, KOBAYASHI E, et al. MEG source localization of spatially extended generators of epileptic activity: Comparing entropic and hierarchical bayesian approaches[J]. PLoS One, 2013, 8(2): e55969. doi: 10.1371/journal.pone.0055969
    [10]
    XU Furong, LIU Ke, YU Zhuliang, et al. EEG extended source imaging with structured sparsity and L1-norm residual[J]. Neural Computing and Applications, 2021, 33(14): 8513–8524. doi: 10.1007/s00521-020-05603-1
    [11]
    周伊婕, 宋西姊, 何峰, 等. 基于脑电的多模态神经功能成像新技术研究进展[J]. 中国生物医学工程学报, 2020, 39(5): 595–602. doi: 10.3969/j.issn.0258-8021.2020.05.010

    ZHOU Yijie, SONG Xizi, HE Feng, et al. Research progress of multimodal functional neural imaging technology based on EEG[J]. Chinese Journal of Biomedical Engineering, 2020, 39(5): 595–602. doi: 10.3969/j.issn.0258-8021.2020.05.010
    [12]
    LIU A K, BELLIVEAU J W, and DALE A M. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(15): 8945–8950. doi: 10.1073/pnas.95.15.8945
    [13]
    HENSON R N, FLANDIN G, FRISTON K J, et al. A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction[J]. Human Brain Mapping, 2010, 31(10): 1512–1531. doi: 10.1002/hbm.20956
    [14]
    LEI Xu, XU Peng, LUO Cheng, et al. fMRI functional networks for EEG source imaging[J]. Human Brain Mapping, 2011, 32(7): 1141–1160. doi: 10.1002/hbm.21098
    [15]
    ZUMER J M, ATTIAS H T, SEKIHARA K, et al. Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data[J]. NeuroImage, 2008, 41(3): 924–940. doi: 10.1016/j.neuroimage.2008.02.006
    [16]
    OU Wanmei, HÄMÄLÄINEN M S, and GOLLAND P. A distributed spatio-temporal EEG/MEG inverse solver[J]. Neuroimage, 2009, 44(3): 932–946. doi: 10.1016/j.neuroimage.2008.05.063
    [17]
    LIU Ke, YU Zhuliang, WU Wei, et al. Bayesian electromagnetic spatio-temporal imaging of extended sources based on matrix factorization[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(9): 2457–2469. doi: 10.1109/TBME.2018.2890291
    [18]
    ENGEMANN D A and GRAMFORT A. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals[J]. NeuroImage, 2015, 108: 328–342. doi: 10.1016/j.neuroimage.2014.12.040
    [19]
    TRUJILLO-BARRETO N J, AUBERT-VÁZQUEZ E, and PENNY W D. Bayesian M/EEG source reconstruction with spatio-temporal priors[J]. NeuroImage, 2008, 39(1): 318–335. doi: 10.1016/j.neuroimage.2007.07.062
    [20]
    HENSON R N, ABDULRAHMAN H, FLANDIN G, et al. Multimodal integration of M/EEG and f/MRI data in SPM12[J]. Frontiers in Neuroscience, 2019, 13: 300. doi: 10.3389/fnins.2019.00300
    [21]
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076
    [22]
    ASADZADEH S, YOUSEFI REZAII T, BEHESHTI S, et al. A systematic review of EEG source localization techniques and their applications on diagnosis of brain abnormalities[J]. Journal of Neuroscience Methods, 2020, 339: 108740. doi: 10.1016/j.jneumeth.2020.108740
    [23]
    AL-SAFFAR A, BIALKOWSKI A, BAKTASHMOTLAGH M, et al. Closing the gap of simulation to reality in electromagnetic imaging of brain strokes via deep neural networks[J]. IEEE Transactions on Computational Imaging, 2021, 7: 13–21. doi: 10.1109/tci.2020.3041092
    [24]
    BORE J C, LI P, JIANG L, et al. A long short-term memory network for sparse spatiotemporal EEG source imaging[J]. IEEE Transactions on Medical Imaging, 2021, 40(12): 3787–3800. doi: 10.1109/TMI.2021.3097758
    [25]
    HOU Yimin, ZHOU Lu, JIA Shuyue, et al. A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN[J]. Journal of Neural Engineering, 2020, 17(1): 016048. doi: 10.1088/1741-2552/ab4af6
    [26]
    WU Wei, ZHANG Yu, JIANG Jing, et al. An electroencephalographic signature predicts antidepressant response in major depression[J]. Nature Biotechnology, 2020, 38(4): 439–447. doi: 10.1038/s41587-019-0397-3
    [27]
    TOLL R T, WU Wei, NAPARSTEK S, et al. An electroencephalography connectomic profile of posttraumatic stress disorder[J]. American Journal of Psychiatry, 2020, 177(3): 233–243. doi: 10.1176/appi.ajp.2019.18080911
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (797) PDF downloads(135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return