Advanced Search
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
LI Xin, LI Yun, WANG Xu, SHA Yuanqing, JIANG Chengwei, WANG Yongjin. Silicon-based InGaN/GaN Multiple Quantum Well Waveguide Directional Coupler Photonic Integrated Chip for Visible Light Communication[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2695-2702. doi: 10.11999/JEIT210758
Citation: LI Xin, LI Yun, WANG Xu, SHA Yuanqing, JIANG Chengwei, WANG Yongjin. Silicon-based InGaN/GaN Multiple Quantum Well Waveguide Directional Coupler Photonic Integrated Chip for Visible Light Communication[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2695-2702. doi: 10.11999/JEIT210758

Silicon-based InGaN/GaN Multiple Quantum Well Waveguide Directional Coupler Photonic Integrated Chip for Visible Light Communication

doi: 10.11999/JEIT210758
Funds:  China Postdoctoral Science Foundation (2018M640508), Talent Program of Nanjing University of Posts and Telecommunications, Open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications), Ministry of Education
  • Received Date: 2021-07-30
  • Rev Recd Date: 2022-03-22
  • Available Online: 2022-03-31
  • Publish Date: 2022-08-17
  • Optical communication technology using visible optical signal as a new information carrier is greatly developed in recent years. In order to develop a new generation of photonic integrated chip as a terminal device of the visible optical communication network, to meet the composite requirements of the visible optical signal transmission,reception, transmission and processing. Based on the silicon-based InGaN/GaN multi-quantum well material, a composite photon integrated chip integrating visible band micro Light-Emitting Diode (LED) light source, waveguide directional coupler and micro photodetector is designed. A luminescence detection coexistence phenomenon of a InGaN/GaN multi-quantum well material is used in this chip to achieve the above composite function. As the transmitting end, the micro LED light source can emit the blue band visible light signal. Its luminous intensity is linear modulated by the injection current, which can realize the amplitude modulation visible light communication, which is suitable for the transmitting end of visible light communication. The visible light signal transmitted by the micro LED light source is transmitted into the waveguide directional coupler, which realizes the effective in-chip transmission coupling and the average optical power distribution of the chip. After the visible light signal passed through the coupled transmission enters the microphotodetector, a photocurrent matching the intensity of the coupled transmitted light signal can be monitored. Finally, effective visible light communication of this chip is also confirmed by visible light communication testing. It provides more possibilities for developing composite functional photon integrated chip terminals facing the needs of visible optical communication networks through this reserach.
  • loading
  • [1]
    MARET L, LAGRANGE A, and DUPRÉ L. Ultra-high speed optical wireless communications with gallium-nitride microLED[J]. The SPIE, 2021, 11706, 0O.
    [2]
    FERREIRA R X G, XIE Enyuan, MCKENDRY J J D, et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications[J]. IEEE Photonics Technology Letters, 2016, 28(19): 2023–2026. doi: 10.1109/LPT.2016.2581318
    [3]
    CHEN S W H, HUANG Yuming, CHANG Yunhan, et al. High-bandwidth green semipolar (20–21) InGaN/GaN micro light-emitting diodes for visible light communication[J]. ACS Photonics, 2020, 7(8): 2228–2235. doi: 10.1021/acsphotonics.0c00764
    [4]
    李荣玲, 商慧亮, 雷雨, 等. 高速可见光通信中关键使能技术研究[J]. 激光与光电子学进展, 2013, 50(5): 050003.

    LI Rongling, SHANG Huiliang, LEI Yu, et al. Research of key enabling technologies for high-speed visible-light communication[J]. Laser &Optoelectronics Progress, 2013, 50(5): 050003.
    [5]
    AMIRI I S, PALAI G, ALZUBI J A, et al. Chip to chip communication through the photonic integrated circuit: A new paradigm to optical VLSI[J]. Optik, 2020, 202: 163588. doi: 10.1016/j.ijleo.2019.163588
    [6]
    TANG Yuling and CHEN Jun. High responsivity of Gr/ n-Si Schottky junction near-infrared photodetector[J]. Superlattices and Microstructures, 2021, 150: 106803. doi: 10.1016/J.SPMI.2021.106803
    [7]
    HE Xiangyu, XIE Enyuan, ISLIM M S, et al. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm[J]. Photonics Research, 2019, 7(7): B41–B47. doi: 10.1364/PRJ.7.000B41
    [8]
    LIU Xinyu, LIU Dajian, and DAI Daoxin. Silicon polarization beam splitter at the 2 μm wavelength band by using a bent directional coupler assisted with a nano-slot waveguide[J]. Optics Express, 2020, 29(2): 2720–2726. doi: 10.1364/OE.403932
    [9]
    BAYAL I and MAHAPATRA P K. Simulation of quantum coherence dynamics in macroscopic domain using a three-waveguide directional coupler[J]. Journal of Modern Optics, 2020, 67(10): 869–879. doi: 10.1080/09500340.2020.1780641
    [10]
    葛义蓉. 定向耦合器在微波传输系统中的应用[J]. 航空计测技术, 2001, 21(1): 31–32,38. doi: 10.3969/j.issn.1674-5795.2001.01.009

    GE Yirong. Application of directional coupler to microwave transmission system[J]. Aviation Metrology &Measurement Technology, 2001, 21(1): 31–32,38. doi: 10.3969/j.issn.1674-5795.2001.01.009
    [11]
    蒋平英. 脊波导定向耦合器的设计与研究[D]. [硕士论文], 电子科技大学, 2007.

    JIANG Pingying. Design and research of ridge waveguide directional coupler[D]. [Master dissertation], University of Electronic Science and Technology, 2007.
    [12]
    TUGENDHAFT I, BORNSTEIN A, WEISSMAN Y, et al. Coupling efficiency of directional fiber couplers in the mid-infrared[J]. Applied Spectroscopy, 1996, 50(7): 906–909. doi: 10.1366/0003702963905420
    [13]
    JANG H S, PARK K N, and LEE K S. Characterization of tunable photonic crystal fiber directional couplers[J]. Applied Optics, 2007, 46(18): 3688–3693. doi: 10.1364/AO.46.003688
    [14]
    MALKA D, DANAN Y, RAMON Y, et al. A photonic 1 × 4 power splitter based on multimode interference in silicon–gallium-nitride slot waveguide structures[J]. Materials, 2016, 9(7): 516. doi: 10.3390/ma9070516
    [15]
    HAMIDAH M and PURNAMANINGSIH R W. An S-bend based optical directional coupler using GaN semiconductor[C]. 2019 IEEE International Conference on Innovative Research and Development (ICIRD), Jakarta, Indonesia, 2019: 1–4.
    [16]
    PURNAMANINGSIH R W, HAMIDAH M, FITHRIATY D, et al. A GaN/sapphire 1 × 4 optical power splitter using five rectangular waveguide for underwater application[C]. 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS), Bangkok, Thailand, 2018: 1–5.
    [17]
    ZHANG Yanfeng, MCKNIGHT L, WATSON I M, et al. Compact large-cross-section GaN directional couplers[C]. IEEE Photonic Society 24th Annual Meeting, Arlington, USA, 2011: 407–408.
    [18]
    THUBTHIMTHONG B, SASAKI T, and HANE K. Photonic-crystal-waveguide-assisted directional couplers for hybrid Si/GaN nanophotonics[C]. 2014 International Conference on Optical MEMS and Nanophotonics, Glasgow, UK, 2014: 201–202.
    [19]
    ENGIN E, O'BRIEN J L, and CRYAN M J. Design and analysis of a gallium nitride-on-sapphire tunable photonic crystal directional coupler[J]. Journal of the Optical Society of America B, 2012, 29(6): 1157–1164. doi: 10.1364/JOSAB.29.001157
    [20]
    YUAN Jialei, GAO Xumin, YANG Yongchao, et al. GaN directional couplers for on-chip optical interconnect[J]. Semiconductor Science and Technology, 2017, 32(4): 045001. doi: 10.1088/1361-6641/aa59ef
    [21]
    PARK J Y, LEE J H, JUNG S, et al. InGaN/GaN-based green-light-emitting diodes with an inserted InGaN/GaN-graded superlattice layer[J]. Physica Status Solidi (a) , 2016, 213(6): 1610–1614. doi: 10.1002/pssa.201533092
    [22]
    DAS D, AIELLO A, GUO Wei, et al. InGaN/GaN quantum dots on silicon with coalesced nanowire buffer layers: A potential technology for visible silicon photonics[J]. IEEE Transactions on Nanotechnology, 2020, 19: 571–574. doi: 10.1109/TNANO.2020.3007732
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (1139) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return