Citation: | TANG Lun, WU Ting, ZHOU Xinlong, CHEN Qianbin. A Virtual Network Function Migration Algorithm Based on Federated Learning Prediction of Resource Requirements[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3532-3540. doi: 10.11999/JEIT210743 |
[1] |
LI Defang, HONG Peilin, XUE Kaiping, et al. Availability aware VNF deployment in datacenter through shared redundancy and multi-tenancy[J]. IEEE Transactions on Network and Service Management, 2019, 16(4): 1651–1664. doi: 10.1109/TNSM.2019.2936505
|
[2] |
QU Kaige, ZHUANG Weihua, YE Qiang, et al. Dynamic flow migration for embedded services in SDN/NFV-enabled 5G core networks[J]. IEEE Transactions on Communications, 2020, 68(4): 2394–2408. doi: 10.1109/TCOMM.2020.2968907
|
[3] |
LIU Yicen, LU Hao, LI Xi, et al. An approach for service function chain reconfiguration in network function virtualization architectures[J]. IEEE Access, 2019, 7: 147224–147237. doi: 10.1109/ACCESS.2019.2946648
|
[4] |
TANG Lun, HE Xiaoyu, ZHAO Peipei, et al. Virtual network function migration based on dynamic resource requirements prediction[J]. IEEE Access, 2019, 7: 112348–112362. doi: 10.1109/ACCESS.2019.2935014
|
[5] |
LIU Yicen, LU Yu, LI Xi, et al. On dynamic service function chain reconfiguration in IoT networks[J]. IEEE Internet of Things Journal, 2020, 7(11): 10969–10984. doi: 10.1109/JIOT.2020.2991753
|
[6] |
HUANG Yuzhe, XU Huahu, GAO Honghao, et al. SSUR: An approach to optimizing virtual machine allocation strategy based on user requirements for cloud data center[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(2): 670–681. doi: 10.1109/TGCN.2021.3067374
|
[7] |
DAYARATHNA M, WEN Yonggang, and FAN Rui. Data center energy consumption modeling: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 18(1): 732–794. doi: 10.1109/COMST.2015.2481183
|
[8] |
ERAMO V, AMMAR M, and LAVACCA F G. Migration energy aware reconfigurations of virtual network function instances in NFV architectures[J]. IEEE Access, 2017, 5: 4927–4938. doi: 10.1109/ACCESS.2017.2685437
|
[9] |
HAN Zhenhua, TAN Haisheng, WANG Rui, et al. Energy-efficient dynamic virtual machine management in data centers[J]. IEEE/ACM Transactions on Networking, 2019, 27(1): 344–360. doi: 10.1109/TNET.2019.2891787
|
[10] |
ZHANG Zhongbao, CAO Huafeng, SU Sen, et al. Energy aware virtual network migration[J]. IEEE Transactions on Cloud Computing, 2022, 10(2): 1173–1189. doi: 10.1109/TCC.2020.2976966.
|
[11] |
GUO Zehua, XU Yang, LIU Yafeng, et al. AggreFlow: Achieving power efficiency, load balancing, and quality of service in data center networks[J]. IEEE/ACM Transactions on Networking, 2020, 29(1): 17–33. doi: 10.1109/TNET.2020.3026015
|
[12] |
LI Biyi, CHENG Bo, LIU Xuan, et al. Joint resource optimization and delay-aware virtual network function migration in data center networks[J]. IEEE Transactions on Network and Service Management, 2021, 18(3): 2960–2974. doi: 10.1109/TNSM.2021.3067883
|
[13] |
ZHANG Kunpeng, WU Lan, ZHU Zhaoju, et al. A multitask learning model for traffic flow and speed forecasting[J]. IEEE Access, 2020, 8: 80707–80715. doi: 10.1109/ACCESS.2020.2990958
|
[14] |
LIU Yi, JAMES J J Q, KANG Jiawen, et al. Privacy-preserving traffic flow prediction: A federated learning approach[J]. IEEE Internet of Things Journal, 2020, 7(8): 7751–7763. doi: 10.1109/JIOT.2020.2991401
|
[15] |
ZHANG Zhenyu, LUO Xiangfeng, LIU Tong, et al. Proximal policy optimization with mixed distributed training[C]. The 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, USA, 2019: 1452–1456.
|
[16] |
SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv: 1707.06347, 2017.
|
[17] |
BEN YAHIA I G, BENDRISS J, SAMBA A, et al. CogNitive 5G networks: Comprehensive operator use cases with machine learning for management operations[C]. 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 2017: 252–259.
|
[18] |
BENDRISS J, BEN YAHIA I G, and ZEGHLACHE D. Forecasting and anticipating SLO breaches in programmable networks[C]. 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 2017: 127–134.
|
[19] |
BENDRISS J. Cognitive management of SLA in software-based networks[D]. [Ph. D. dissertation], Institut National des Télécommunications, 2018.
|