Citation: | YANG Minjia, BAI Xueru, LIU Shihao, ZENG Lei, ZHOU Feng. Small-Data Inverse Synthetic Aperture Radar Object Recognition Based on Gaussian Prototypical Network[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3566-3573. doi: 10.11999/JEIT210724 |
[1] |
BAI Xueru, ZHOU Xuening, ZHANG Feng, et al. Robust Pol-ISAR target recognition based on ST-MC-DCNN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9912–9927. doi: 10.1109/TGRS.2019.2930112
|
[2] |
KANG Le, LUO Ying, ZHANG Qun, et al. 3-D scattering image sparse reconstruction via radar network[J]. IEEE Transactions on Geoscience and Remote Sensing, To be published.
|
[3] |
ZHANG Shuanghui, LIU Yongxiang, LI Xiang, et al. Enhancing ISAR image efficiently via convolutional reweighted l1 minimization[J]. IEEE Transactions on Image Processing, 2021, 30: 4291–4304. doi: 10.1109/TIP.2021.3070442
|
[4] |
杨磊, 夏亚波, 毛欣瑶, 等. 基于分层贝叶斯Lasso的稀疏ISAR成像算法[J]. 电子与信息学报, 2021, 43(3): 623–631. doi: 10.11999/JEIT200292
YANG Lei, XIA Yabo, MAO Xinyao, et al. Sparse ISAR imaging algorithm based on Bayesian-lasso[J]. Journal of Electronics &Information Technology, 2021, 43(3): 623–631. doi: 10.11999/JEIT200292
|
[5] |
LEE S J, LEE M J, KIM K T, et al. Classification of ISAR images using variable cross-range resolutions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2291–2303. doi: 10.1109/TAES.2018.2814211
|
[6] |
BENEDEK C and MARTORELLA M. Moving target analysis in ISAR image sequences with a multiframe marked point process model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2234–2246. doi: 10.1109/TGRS.2013.2258927
|
[7] |
PALADINI R, MARTORELLA M, and BERIZZI F. Classification of man-made targets via invariant coherency-matrix eigenvector decomposition of polarimetric SAR/ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3022–3034. doi: 10.1109/TGRS.2011.2116121
|
[8] |
PARK S H, JUNG J H, KIM S H, et al. Efficient classification of ISAR images using 2D fourier transform and polar mapping[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1726–1736. doi: 10.1109/TAES.2015.140184
|
[9] |
MARTORELLA M, GIUSTI E, CAPRIA A, et al. Automatic target recognition by means of polarimetric ISAR images and neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3786–3794. doi: 10.1109/TGRS.2009.2025371
|
[10] |
TOUMI A, HOUSSEINI A E, and KHENCHAF A. Aircrafts recognition using convolutional neurons network[C]. International Conference on Radar Systems, Belfast, UK, 2017: 1–4.
|
[11] |
LIN Zhao, JI Kefeng, KANG Miao, et al. Deep convolutional highway unit network for SAR target classification with limited labeled training data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1091–1095. doi: 10.1109/LGRS.2017.2698213
|
[12] |
WANG Li, BAI Xueru, GONG Chen, et al. Hybrid inference network for few-shot SAR automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9257–9269. doi: 10.1109/TGRS.2021.3051024
|
[13] |
WANG Yaqing, YAO Quanming, KWOK J T, et al. Generalizing from a few examples: A survey on few-shot learning[J]. ACM Computing Surveys, 2020, 53(3): 63.
|
[14] |
KOCH G, ZEMEL R, SALAKHUTDINOV R, et al. Siamese neural networks for one-shot image recognition[C]. 32nd International Conference on Machine Learning, Lille, France, 2015: 1–27.
|
[15] |
VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]. 30th International Conference on Neural Information Processing System, Barcelona, Spain, 2016: 3637–3645.
|
[16] |
SNELL J, SWERSKY K, and ZEMEL R S. Prototypical networks for few-shot learning[C]. 31st International Conference on Neural Information Processing System, Long Beach, USA, 2017: 4080–4090.
|
[17] |
FORT S. Gaussian prototypical networks for few-shot learning on omniglot[C]. Second workshop on Bayesian Deep Learning (NIPS 2017), Long Beach, USA, 2017: 1–10.
|
[18] |
GLOROT X, BORDES A, and BENGIO Y. Deep sparse rectifier neural networks[C]. Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2011: 315–323.
|
[19] |
VAN DER MAATEN L and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
|
[20] |
WILK M B and GNANADESIKAN R. Probability plotting methods for the analysis of data[J]. Biometrika, 1968, 55(1): 1–17.
|
[21] |
KINGMA D P and BA J L. Adam: A method for stochastic optimization[C]. 3rd International Conference on Learning Representation, San Diego, USA, 2015: 1–15.
|