Citation: | DU Xiaoni, HU Jinxia, JIN Wengang, SUN Yanzhong. Construction of Two Classes of Minimal Binary Linear Codes[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3643-3649. doi: 10.11999/JEIT210720 |
[1] |
ÇALKAVUR S. A study on multisecret-sharing schemes based on linear codes[J]. Emerging Science Journal, 2020, 4(4): 263–271. doi: 10.28991/esj-2020-01229
|
[2] |
WANG Yaru, LI Fulin, and ZHU Shixin. Two-weight linear codes and their applications in secret sharing[J]. Chinese Journal of Electronics, 2019, 28(4): 706–711. doi: 10.1049/cje.2019.04.006
|
[3] |
CHABANNE H, COHEN G, and PATEY A. Towards secure two-party computation from the wire-tap channel[C]. The 16th International Conference on Information Security and Cryptology, Seoul, Korea, 2014: 34–46.
|
[4] |
NIEMINEN R and JÄRVINEN K. Practical privacy-preserving indoor localization based on secure two-party computation[J]. IEEE Transactions on Mobile Computing, 2021, 20(9): 2877–2890. doi: 10.1109/TMC.2020.2990871
|
[5] |
WANG Qichun and STĂNICĂ P. New bounds on the covering radius of the second order Reed-Muller code of length 128[J]. Cryptography and Communications, 2019, 11(2): 269–277. doi: 10.1007/s12095-018-0289-2
|
[6] |
CARLET C. The automorphism groups of the Kerdock codes[J]. Journal of Information and Optimization Sciences, 1991, 12(3): 387–400. doi: 10.1080/02522667.1991.10699078
|
[7] |
BAUMERT L D and MCELIECE R J. Weights of irreducible cyclic codes[J]. Information and Control, 1972, 20(2): 158–175. doi: 10.1016/S0019-9958(72)90354-3
|
[8] |
DING Cunsheng and NIEDERREITER H. Cyclotomic linear codes of order 3[J]. IEEE Transactions on Information Theory, 2007, 53(6): 2274–2277. doi: 10.1109/TIT.2007.896886
|
[9] |
XIANG Can. Linear codes from a generic construction[J]. Cryptography and Communications, 2016, 8(4): 525–539. doi: 10.1007/s12095-015-0158-1
|
[10] |
DING Cunsheng. A construction of binary linear codes from Boolean functions[J]. Discrete Mathematics, 2016, 339(15): 2288–2303. doi: 10.1016/j.disc.2016.03.029
|
[11] |
CHANG S and HYUN J Y. Linear codes from simplicial complexes[J]. Designs, Codes and Cryptography, 2018, 86(10): 2167–2181. doi: 10.1007/s10623-017-0442-5
|
[12] |
HENG Ziling, DING Cunsheng, and ZHOU Zhengchun. Minimal linear codes over finite fields[J]. Finite Fields and Their Applications, 2018, 54: 176–196. doi: 10.1016/j.ffa.2018.08.010
|
[13] |
DING Cunsheng, HENG Ziling, and ZHOU Zhengchun. Minimal binary linear codes[J]. IEEE Transactions on Information Theory, 2018, 64(10): 6536–6545. doi: 10.1109/TIT.2018.2819196
|
[14] |
MESNAGER S, QI Yanfeng, RU Hongming, et al. Minimal linear codes from characteristic functions[J]. IEEE Transactions on Information Theory, 2020, 66(9): 5404–5413. doi: 10.1109/TIT.2020.2978387
|
[15] |
ASHIKHMIN A and BARG A. Minimal vectors in linear codes[J]. IEEE Transactions on Information Theory, 1998, 44(5): 2010–2017. doi: 10.1109/18.705584
|
[16] |
MACWILLIAMS F J and SLOANE N J A. The Theory of Error-Correcting Codes[M]. Amsterdam: Elsevier-North-Holland, 1997.
|