Advanced Search
Volume 44 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
DU Xiaoni, HU Jinxia, JIN Wengang, SUN Yanzhong. Construction of Two Classes of Minimal Binary Linear Codes[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3643-3649. doi: 10.11999/JEIT210720
Citation: DU Xiaoni, HU Jinxia, JIN Wengang, SUN Yanzhong. Construction of Two Classes of Minimal Binary Linear Codes[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3643-3649. doi: 10.11999/JEIT210720

Construction of Two Classes of Minimal Binary Linear Codes

doi: 10.11999/JEIT210720
Funds:  The National Natural Science Foundation of China (61772022, 62172337)
  • Received Date: 2021-07-16
  • Rev Recd Date: 2022-04-03
  • Available Online: 2022-04-22
  • Publish Date: 2022-10-19
  • Linear codes play an important role in data storage, information security and secret sharing. Minimal linear codes are the first choice to design secret sharing schemes, so the design of minimal linear codes is one of the important contents of current cryptosystem and coding theory. In this paper, the Walsh spectrum distribution of the selected Boolean functions is studied, and two kinds of minimal linear codes are obtained by using the Walsh spectrum distribution of the functions, then the weight distribution of the codes are determined. The results show that the constructed codes are minimal linear codes that do not satisfy the Ashikhmin-Barg condition, and can be used to design secret sharing schemes with good access structure.
  • loading
  • [1]
    ÇALKAVUR S. A study on multisecret-sharing schemes based on linear codes[J]. Emerging Science Journal, 2020, 4(4): 263–271. doi: 10.28991/esj-2020-01229
    [2]
    WANG Yaru, LI Fulin, and ZHU Shixin. Two-weight linear codes and their applications in secret sharing[J]. Chinese Journal of Electronics, 2019, 28(4): 706–711. doi: 10.1049/cje.2019.04.006
    [3]
    CHABANNE H, COHEN G, and PATEY A. Towards secure two-party computation from the wire-tap channel[C]. The 16th International Conference on Information Security and Cryptology, Seoul, Korea, 2014: 34–46.
    [4]
    NIEMINEN R and JÄRVINEN K. Practical privacy-preserving indoor localization based on secure two-party computation[J]. IEEE Transactions on Mobile Computing, 2021, 20(9): 2877–2890. doi: 10.1109/TMC.2020.2990871
    [5]
    WANG Qichun and STĂNICĂ P. New bounds on the covering radius of the second order Reed-Muller code of length 128[J]. Cryptography and Communications, 2019, 11(2): 269–277. doi: 10.1007/s12095-018-0289-2
    [6]
    CARLET C. The automorphism groups of the Kerdock codes[J]. Journal of Information and Optimization Sciences, 1991, 12(3): 387–400. doi: 10.1080/02522667.1991.10699078
    [7]
    BAUMERT L D and MCELIECE R J. Weights of irreducible cyclic codes[J]. Information and Control, 1972, 20(2): 158–175. doi: 10.1016/S0019-9958(72)90354-3
    [8]
    DING Cunsheng and NIEDERREITER H. Cyclotomic linear codes of order 3[J]. IEEE Transactions on Information Theory, 2007, 53(6): 2274–2277. doi: 10.1109/TIT.2007.896886
    [9]
    XIANG Can. Linear codes from a generic construction[J]. Cryptography and Communications, 2016, 8(4): 525–539. doi: 10.1007/s12095-015-0158-1
    [10]
    DING Cunsheng. A construction of binary linear codes from Boolean functions[J]. Discrete Mathematics, 2016, 339(15): 2288–2303. doi: 10.1016/j.disc.2016.03.029
    [11]
    CHANG S and HYUN J Y. Linear codes from simplicial complexes[J]. Designs, Codes and Cryptography, 2018, 86(10): 2167–2181. doi: 10.1007/s10623-017-0442-5
    [12]
    HENG Ziling, DING Cunsheng, and ZHOU Zhengchun. Minimal linear codes over finite fields[J]. Finite Fields and Their Applications, 2018, 54: 176–196. doi: 10.1016/j.ffa.2018.08.010
    [13]
    DING Cunsheng, HENG Ziling, and ZHOU Zhengchun. Minimal binary linear codes[J]. IEEE Transactions on Information Theory, 2018, 64(10): 6536–6545. doi: 10.1109/TIT.2018.2819196
    [14]
    MESNAGER S, QI Yanfeng, RU Hongming, et al. Minimal linear codes from characteristic functions[J]. IEEE Transactions on Information Theory, 2020, 66(9): 5404–5413. doi: 10.1109/TIT.2020.2978387
    [15]
    ASHIKHMIN A and BARG A. Minimal vectors in linear codes[J]. IEEE Transactions on Information Theory, 1998, 44(5): 2010–2017. doi: 10.1109/18.705584
    [16]
    MACWILLIAMS F J and SLOANE N J A. The Theory of Error-Correcting Codes[M]. Amsterdam: Elsevier-North-Holland, 1997.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(2)

    Article Metrics

    Article views (648) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return