Advanced Search
Volume 44 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
ZAN Xiangzhen, YAO Xiangyu, XU Peng, CHEN Zhihua, SHI Xiaolong, LI Shudong, LIU Wenbin. An Efficient Bueket-allocation Decoding Method Based on Forward Error Correction Codes for Deoxyribo Nucleicecid Storage[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3650-3656. doi: 10.11999/JEIT210697
Citation: ZAN Xiangzhen, YAO Xiangyu, XU Peng, CHEN Zhihua, SHI Xiaolong, LI Shudong, LIU Wenbin. An Efficient Bueket-allocation Decoding Method Based on Forward Error Correction Codes for Deoxyribo Nucleicecid Storage[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3650-3656. doi: 10.11999/JEIT210697

An Efficient Bueket-allocation Decoding Method Based on Forward Error Correction Codes for Deoxyribo Nucleicecid Storage

doi: 10.11999/JEIT210697
Funds:  The National Natural Science Foundation of China (62072128, 61876047, 62002079)
  • Received Date: 2021-07-13
  • Rev Recd Date: 2021-09-30
  • Available Online: 2021-10-26
  • Publish Date: 2022-10-19
  • Compared with traditional storage, the difficulty of DeoxyriboNucleic Acid (DNA) data storage is that insertion and deletion errors in sequenced reads pose a great challenge to data recovery. For forward error-correcting coded DNA storage with one-base error-correcting capability, a bucket allocation strategy is proposed to improve the decoding accuracy and efficiency. Firstly, all identifiable DNA codes of reads in each cluster are searched and the corresponding valid codes according to the one-base error-correcting capability are determined; Then, for each identifiable DNA code, appropriate coding position (i.e. bucket) according is allocated to its position in a read; Finally, the consensus code for each bucket is determined using majority voting strategy. Simulation results show that the proposed method can correct more than 94% errors at the coverage of 20X when error rate is 5% or 10%, and correct more than 90% errors at the coverage of 60X when error rate is 15%.
  • loading
  • [1]
    REINSEL D, GANTZ J, and RYDNING J. The digital of the world from edge to core[EB/OL]. http://book.itep.ru/depository/dig_economy/idc-seagate-dataage-whitepaper.pdf, 2020.
    [2]
    WILLIAMS E D, AYRES R U, and HELLER M. The 1.7 kilogram microchip:  Energy and material use in the production of semiconductor devices[J]. Environmental Science & Technology, 2002, 36(24): 5504–5510. doi: 10.1021/es025643o
    [3]
    GODA K and KITSUREGAWA M. The history of storage systems[J]. Proceedings of the IEEE, 2012, 100: 1433–1440. doi: 10.1109/JPROC.2012.2189787
    [4]
    许鹏, 方刚, 石晓龙, 等. DNA存储及其研究进展[J]. 电子与信息学报, 2020, 42(6): 1326–1331. doi: 10.11999/JEIT190863

    XU Peng, FANG Gang, SHI Xiaolong, et al. DNA storage and its research progress[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1326–1331. doi: 10.11999/JEIT190863
    [5]
    刘文斌, 朱翔鸥, 王向红, 等. 一种优化DNA计算模板性能的新方法[J]. 电子与信息学报, 2008, 30(5): 1131–1135.

    LIU Wenbin, ZHU Xiangou, WANG Xianghong, et al. A new method to optimize the template set in DNA computing[J]. Journal of Electronics &Information Technology, 2008, 30(5): 1131–1135.
    [6]
    CEZE L, NIVALA J, and STRAUSS K. Molecular digital data storage using DNA[J]. Nature Reviews Genetics, 2019, 20(8): 456–466. doi: 10.1038/s41576-019-0125-3
    [7]
    GAO Yanmin, CHEN Xin, QIAO Hongyan, et al. Low-bias manipulation of DNA oligo pool for robust data storage[J]. ACS Synthetic Biology, 2020, 9(12): 3344–3352. doi: 10.1021/acssynbio.0c00419
    [8]
    DONG Yiming, SUN Fajia, PING Zhi, et al. DNA storage: Research landscape and future prospects[J]. National Science Review, 2020, 7(6): 1092–1107. doi: 10.1093/nsr/nwaa007
    [9]
    HECKEL R, MIKUTIS G, and GRASS R N. A characterization of the DNA data storage channel[J]. Scientific Reports, 2019, 9(1): 9663. doi: 10.1038/s41598-019-45832-6
    [10]
    STANCU M C, VAN ROOSMALEN M J, RENKENS I, et al. Mapping and phasing of structural variation in patient genomes using nanopore sequencing[J]. Nature Communications, 2017, 8(1): 1326. doi: 10.1038/s41467-017-01343-4
    [11]
    TAKAHASHI C N, NGUYEN B H, STRAUSS K, et al. Demonstration of end-to-end automation of DNA data storage[J]. Scientific Reports, 2019, 9(1): 4998. doi: 10.1038/s41598-019-41228-8
    [12]
    KUMAR U K and UMASHANKAR B S. Improved hamming code for error detection and correction[C]. 2007 2nd International Symposium on Wireless Pervasive Computing, San Juan, USA, 2007: 1. doi: 10.1109/ISWPC.2007.342654.
    [13]
    BLAWAT M, GAEDKE K, HÜTTER I, et al. Forward error correction for DNA data storage[J]. Procedia Computer Science, 2016, 80: 1011–1022. doi: 10.1016/j.procs.2016.05.398
    [14]
    LU Xiaozhou, JEONG J, KIM J W, et al. Error rate-based log-likelihood ratio processing for low-density parity-check codes in DNA storage[J]. Ieee Access, 2020, 8: 162892–162902. doi: 10.1109/ACCESS.2020.3021700
    [15]
    ORGANICK L, ANG S D, CHEN Y J, et al. Random access in large-scale DNA data storage[J]. Nature Biotechnology, 2018, 36(3): 242–248. doi: 10.1038/nbt.4079
    [16]
    ANTKOWIAK P L, LIETARD J, DARESTANI M Z, et al. Low cost DNA data storage using photolithographic synthesis and advanced information reconstruction and error correction[J]. Nature Communications, 2020, 11(1): 5345. doi: 10.1038/s41467-020-19148-3
    [17]
    MEISER L C, ANTKOWIAK P L, KOCH J, et al. Reading and writing digital data in DNA[J]. Nature Protocols, 2020, 15(1): 86–101. doi: 10.1038/s41596-019-0244-5
    [18]
    ERLICH Y and ZIELINSKI D. DNA Fountain enables a robust and efficient storage architecture[J]. Science, 2017, 355(6328): 950–954. doi: 10.1126/science.aaj2038
    [19]
    JEONG J, PARK S J, KIM J W, et al. Cooperative sequence clustering and decoding for DNA storage system with fountain codes[J]. Bioinformatics, 2021, 37(19): 3136–3143. doi: 10.1093/bioinformatics/btab246
    [20]
    PRESS W H, HAWKINS J A, JONES JR S K, et al. HEDGES error-correcting code for DNA storage corrects indels and allows sequence constraints[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(31): 18489–18496. doi: 10.1073/pnas.2004821117
    [21]
    XUE Tianbo and LAU F C M. Notice of violation of IEEE publication principles: Construction of GC-balanced DNA with deletion/insertion/mutation error correction for DNA storage system[J]. IEEE Access, 2020, 8: 140972–140980. doi: 10.1109/ACCESS.2020.3012688
    [22]
    SONG Lifu, GENG Feng, GONG Ziyi, et al. . Robust data storage in DNA by de Bruijn graph-based decoding[J]. bioRxiv, 2022, 13(1): 5361. doi: 10.1101/2020.12.20.423642.
    [23]
    ZAN Xiangzhen, YAO Xiangyu, XU Peng, et al. A hierarchical error correction strategy for text DNA storage[J]. Interdisciplinary Sciences: Computational Life Sciences, 2022, 14(1): 141–150. doi: 10.1007/s12539-021-00476-x.
    [24]
    BORNHOLT J, LOPEZ R, CARMEAN D M, et al. A DNA-based archival storage system[J]. ACM SIGPLAN Notices, 2016, 51(4): 637–649. doi: 10.1145/2954679.2872397
    [25]
    ZHONG Yunpeng, QI Shanshan, SHENG Fuxu, et al. A new digital information storing and reading system based on synthetic DNA[J]. Science China Life Sciences, 2018, 61(6): 733–735. doi: 10.1007/s11427-017-9131-7
    [26]
    LEE U J, HWANG S, KIM K E, et al. DNA data storage in Perl[J]. Biotechnology and Bioprocess Engineering, 2020, 25(4): 607–615. doi: 10.1007/s12257-020-0022-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (1227) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return