Citation: | ZAN Xiangzhen, YAO Xiangyu, XU Peng, CHEN Zhihua, SHI Xiaolong, LI Shudong, LIU Wenbin. An Efficient Bueket-allocation Decoding Method Based on Forward Error Correction Codes for Deoxyribo Nucleicecid Storage[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3650-3656. doi: 10.11999/JEIT210697 |
[1] |
REINSEL D, GANTZ J, and RYDNING J. The digital of the world from edge to core[EB/OL]. http://book.itep.ru/depository/dig_economy/idc-seagate-dataage-whitepaper.pdf, 2020.
|
[2] |
WILLIAMS E D, AYRES R U, and HELLER M. The 1.7 kilogram microchip: Energy and material use in the production of semiconductor devices[J]. Environmental Science & Technology, 2002, 36(24): 5504–5510. doi: 10.1021/es025643o
|
[3] |
GODA K and KITSUREGAWA M. The history of storage systems[J]. Proceedings of the IEEE, 2012, 100: 1433–1440. doi: 10.1109/JPROC.2012.2189787
|
[4] |
许鹏, 方刚, 石晓龙, 等. DNA存储及其研究进展[J]. 电子与信息学报, 2020, 42(6): 1326–1331. doi: 10.11999/JEIT190863
XU Peng, FANG Gang, SHI Xiaolong, et al. DNA storage and its research progress[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1326–1331. doi: 10.11999/JEIT190863
|
[5] |
刘文斌, 朱翔鸥, 王向红, 等. 一种优化DNA计算模板性能的新方法[J]. 电子与信息学报, 2008, 30(5): 1131–1135.
LIU Wenbin, ZHU Xiangou, WANG Xianghong, et al. A new method to optimize the template set in DNA computing[J]. Journal of Electronics &Information Technology, 2008, 30(5): 1131–1135.
|
[6] |
CEZE L, NIVALA J, and STRAUSS K. Molecular digital data storage using DNA[J]. Nature Reviews Genetics, 2019, 20(8): 456–466. doi: 10.1038/s41576-019-0125-3
|
[7] |
GAO Yanmin, CHEN Xin, QIAO Hongyan, et al. Low-bias manipulation of DNA oligo pool for robust data storage[J]. ACS Synthetic Biology, 2020, 9(12): 3344–3352. doi: 10.1021/acssynbio.0c00419
|
[8] |
DONG Yiming, SUN Fajia, PING Zhi, et al. DNA storage: Research landscape and future prospects[J]. National Science Review, 2020, 7(6): 1092–1107. doi: 10.1093/nsr/nwaa007
|
[9] |
HECKEL R, MIKUTIS G, and GRASS R N. A characterization of the DNA data storage channel[J]. Scientific Reports, 2019, 9(1): 9663. doi: 10.1038/s41598-019-45832-6
|
[10] |
STANCU M C, VAN ROOSMALEN M J, RENKENS I, et al. Mapping and phasing of structural variation in patient genomes using nanopore sequencing[J]. Nature Communications, 2017, 8(1): 1326. doi: 10.1038/s41467-017-01343-4
|
[11] |
TAKAHASHI C N, NGUYEN B H, STRAUSS K, et al. Demonstration of end-to-end automation of DNA data storage[J]. Scientific Reports, 2019, 9(1): 4998. doi: 10.1038/s41598-019-41228-8
|
[12] |
KUMAR U K and UMASHANKAR B S. Improved hamming code for error detection and correction[C]. 2007 2nd International Symposium on Wireless Pervasive Computing, San Juan, USA, 2007: 1. doi: 10.1109/ISWPC.2007.342654.
|
[13] |
BLAWAT M, GAEDKE K, HÜTTER I, et al. Forward error correction for DNA data storage[J]. Procedia Computer Science, 2016, 80: 1011–1022. doi: 10.1016/j.procs.2016.05.398
|
[14] |
LU Xiaozhou, JEONG J, KIM J W, et al. Error rate-based log-likelihood ratio processing for low-density parity-check codes in DNA storage[J]. Ieee Access, 2020, 8: 162892–162902. doi: 10.1109/ACCESS.2020.3021700
|
[15] |
ORGANICK L, ANG S D, CHEN Y J, et al. Random access in large-scale DNA data storage[J]. Nature Biotechnology, 2018, 36(3): 242–248. doi: 10.1038/nbt.4079
|
[16] |
ANTKOWIAK P L, LIETARD J, DARESTANI M Z, et al. Low cost DNA data storage using photolithographic synthesis and advanced information reconstruction and error correction[J]. Nature Communications, 2020, 11(1): 5345. doi: 10.1038/s41467-020-19148-3
|
[17] |
MEISER L C, ANTKOWIAK P L, KOCH J, et al. Reading and writing digital data in DNA[J]. Nature Protocols, 2020, 15(1): 86–101. doi: 10.1038/s41596-019-0244-5
|
[18] |
ERLICH Y and ZIELINSKI D. DNA Fountain enables a robust and efficient storage architecture[J]. Science, 2017, 355(6328): 950–954. doi: 10.1126/science.aaj2038
|
[19] |
JEONG J, PARK S J, KIM J W, et al. Cooperative sequence clustering and decoding for DNA storage system with fountain codes[J]. Bioinformatics, 2021, 37(19): 3136–3143. doi: 10.1093/bioinformatics/btab246
|
[20] |
PRESS W H, HAWKINS J A, JONES JR S K, et al. HEDGES error-correcting code for DNA storage corrects indels and allows sequence constraints[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(31): 18489–18496. doi: 10.1073/pnas.2004821117
|
[21] |
XUE Tianbo and LAU F C M. Notice of violation of IEEE publication principles: Construction of GC-balanced DNA with deletion/insertion/mutation error correction for DNA storage system[J]. IEEE Access, 2020, 8: 140972–140980. doi: 10.1109/ACCESS.2020.3012688
|
[22] |
SONG Lifu, GENG Feng, GONG Ziyi, et al. . Robust data storage in DNA by de Bruijn graph-based decoding[J]. bioRxiv, 2022, 13(1): 5361. doi: 10.1101/2020.12.20.423642.
|
[23] |
ZAN Xiangzhen, YAO Xiangyu, XU Peng, et al. A hierarchical error correction strategy for text DNA storage[J]. Interdisciplinary Sciences: Computational Life Sciences, 2022, 14(1): 141–150. doi: 10.1007/s12539-021-00476-x.
|
[24] |
BORNHOLT J, LOPEZ R, CARMEAN D M, et al. A DNA-based archival storage system[J]. ACM SIGPLAN Notices, 2016, 51(4): 637–649. doi: 10.1145/2954679.2872397
|
[25] |
ZHONG Yunpeng, QI Shanshan, SHENG Fuxu, et al. A new digital information storing and reading system based on synthetic DNA[J]. Science China Life Sciences, 2018, 61(6): 733–735. doi: 10.1007/s11427-017-9131-7
|
[26] |
LEE U J, HWANG S, KIM K E, et al. DNA data storage in Perl[J]. Biotechnology and Bioprocess Engineering, 2020, 25(4): 607–615. doi: 10.1007/s12257-020-0022-9
|