Citation: | FENG Xinxin, LI Wenlong, HE Zhao, ZHENG Haifeng. Human Posture Recognition Based on Multi-dimensional Information Feature Fusion of Frequency Modulated Continuous Wave Radar[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3583-3591. doi: 10.11999/JEIT210696 |
[1] |
杨丽梅, 李致豪. 面向人机交互的手势识别系统设计[J]. 工业控制计算机, 2020, 33(3): 18–20,22. doi: 10.3969/j.issn.1001-182X.2020.03.007
YANG Limei and LI Zhihao. Design of gesture recognition system towards human computer interaction[J]. Industrial Control Computer, 2020, 33(3): 18–20,22. doi: 10.3969/j.issn.1001-182X.2020.03.007
|
[2] |
AGGARWAL J K and XIA Lu. Human activity recognition from 3D data: A review[J]. Pattern Recognition Letters, 2014, 48: 70–80. doi: 10.1016/j.patrec.2014.04.011
|
[3] |
TRAN D, WANG Heng, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6450–6459.
|
[4] |
熊昕, 郑杨娇子, 张上. 基于长短时记忆网络及变体的跌倒检测和人体行为识别系统[J]. 信息通信, 2020(2): 65–67. doi: 10.3969/j.issn.1673-1131.2020.02.027
XIONG Xin, ZHENG Yangjiaozi, and ZHANG Shang. Fall detection and human behavior recognition system based on long and short time memory networks and variants[J]. Information &Communications, 2020(2): 65–67. doi: 10.3969/j.issn.1673-1131.2020.02.027
|
[5] |
SABOKROU M, POURREZA M, FAYYAZ M, et al. AVID: Adversarial visual irregularity detection[C]. 14th Asian Conference on Computer Vision, Perth, Australia, 2019: 488–505.
|
[6] |
刘天亮, 谯庆伟, 万俊伟, 等. 融合空间-时间双网络流和视觉注意的人体行为识别[J]. 电子与信息学报, 2018, 40(10): 2395–2401. doi: 10.11999/JEIT171116
LIU Tianliang, QIAO Qingwei, WAN Junwei, et al. Human action recognition via Spatio-temporal dual network flow and visual attention fusion[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2395–2401. doi: 10.11999/JEIT171116
|
[7] |
WANG Jie, ZHANG Xiao, GAO Qinhua, et al. Device-free wireless localization and activity recognition: A deep learning approach[J]. IEEE Transactions on Vehicular Technology, 2017, 66(7): 6258–6267. doi: 10.1109/TVT.2016.2635161
|
[8] |
XU Shengzhi, KOOIJ B J, and YAROVOY A. Joint Doppler and DOA estimation using (Ultra-)Wideband FMCW signals[J]. Signal Processing, 2020, 168: 107259. doi: 10.1016/j.sigpro.2019.107259
|
[9] |
LEE J, HWANG S, YOU S, et al. Joint angle, velocity, and range estimation using 2D MUSIC and successive interference cancellation in FMCW MIMO radar system[J]. IEICE Transactions on Communications, 2020, E103.B(3): 283–290. doi: 10.1587/transcom.2018EBP3330
|
[10] |
王勇, 吴金君, 田增山, 等. 基于FMCW雷达的多维参数手势识别算法[J]. 电子与信息学报, 2019, 41(4): 822–829. doi: 10.11999/JEIT180485
WANG Yong, WU Jinjun, TIAN Zengshan, et al. Gesture recognition with multi-dimensional parameter using FMCW radar[J]. Journal of Electronics &Information Technology, 2019, 41(4): 822–829. doi: 10.11999/JEIT180485
|
[11] |
ZHAO Yinan, ZHANG Zihao, and ZHANG Zhaolin. Multi-angle data cube action recognition based on millimeter wave radar[C]. 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 2020: 749–753.
|
[12] |
ZHAO Mingmin, LI Tianhong, ABU ALSHEIKH M, et al. Through-wall human pose estimation using radio signals[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7356–7365.
|
[13] |
刘皓, 郭立, 易波, 等. 基于3D骨架和MCRF模型的行为识别[J]. 中国科学技术大学学报, 2014, 44(4): 285–291. doi: 10.3969/j.issn.0253-2778.2014.04.005
LIU Hao, GUO Li, YI Bo, et al. Human activity recognition based on 3D skeletons and MCRF model[J]. Journal of University of Science and Technology of China, 2014, 44(4): 285–291. doi: 10.3969/j.issn.0253-2778.2014.04.005
|
[14] |
ATREY P K, HOSSAIN M A, EL SADDIK A, et al. Multimodal fusion for multimedia analysis: A survey[J]. Multimedia Systems, 2010, 16(6): 345–379. doi: 10.1007/s00530-010-0182-0
|
[15] |
MORENCY L P, MIHALCEA R, and DOSHI P. Towards multimodal sentiment analysis: Harvesting opinions from the web[C]. The 13th International Conference on Multimodal Interfaces, Alicante, Spain, 2011: 169–176.
|
[16] |
XUE Hongfei, JIANG Wenjun, MIAO Chenglin, et al. DeepFusion: A deep learning framework for the fusion of heterogeneous sensory data[C]. The Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, Catania, Italy, 2019: 151–160.
|
[17] |
ZADEH A, CHEN Minghai, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[C]. The 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017: 1114–1125.
|
[18] |
LIU Zhun, SHEN Ying, LAKSHMINARASIMHAN V B, et al. Efficient low-rank multimodal fusion with modality-specific factors[C]. The 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 2018: 2247–2256.
|
[19] |
GANIN Y and LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 1180–1189.
|
[20] |
SCITOVSKI R, MAJSTOROVIĆ S, and SABO K. A combination of RANSAC and DBSCAN methods for solving the multiple geometrical object detection problem[J]. Journal of Global Optimization, 2021, 79(3): 669–686. doi: 10.1007/s10898-020-00950-8
|
[21] |
DEKKER B, JACOBS S, KOSSEN A S, et al. Gesture recognition with a low power FMCW radar and a deep convolutional neural network[C]. 2017 European Radar Conference (EURAD), Nuremberg, Germany, 2017: 163–166.
|
[22] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2014.
|