Advanced Search
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
WANG Xiuli, JIN Ni, JIANG Yuhang. Constructions of Splitting Authentication Codes Based on Group Divisible Design[J]. Journal of Electronics & Information Technology, 2022, 44(2): 591-601. doi: 10.11999/JEIT210683
Citation: WANG Xiuli, JIN Ni, JIANG Yuhang. Constructions of Splitting Authentication Codes Based on Group Divisible Design[J]. Journal of Electronics & Information Technology, 2022, 44(2): 591-601. doi: 10.11999/JEIT210683

Constructions of Splitting Authentication Codes Based on Group Divisible Design

doi: 10.11999/JEIT210683
Funds:  The Key Projects of Natural Science from Fundamental Research of the Central Universities of China Civil Aviation University (3122019192)
  • Received Date: 2021-07-08
  • Rev Recd Date: 2021-10-29
  • Available Online: 2021-11-06
  • Publish Date: 2022-02-25
  • Splitting authentication codes are an important method to study authentication codes with arbitration. Splitting authentication codes have a higher utilization rate of encoding rules than non-splitting authentication codes. Splitting authentication codes are constructed through group divisible design in this article. Firstly, a theorem for constructing splitting authentication codes is given. The theorem uses Group Divisible Design (GDD) to construct a splitting-GDD, and then a splitting-Balanced Incomplete Block Design (BIBD) by splitting-GDD is constructed, and then a splitting authentication code is obtained; Secondly, the feasibility of constructing splitting authentication codes through GDD under the conditions given in this article is verified. Then a splitting design is given and a splitting authentication codes based on GDD is constructed; Thirdly, the number of sources, the number of encoding rules, the number of messages of the splitting authentication code, the impersonation attack probability and the substitution attack probability are calculated, then this article proves that the constructed splitting authentication code is an optimal splitting authentication code; Finally, a concrete example of the constructed splitting authentication code is given, the successful impersonation attack probability and the successful substitution attack probability are calculated, the rationality of construction is verified by simulation, and verifies that it satisfies the optimality.
  • loading
  • [1]
    GILBERT E N, MACWILLIAMS F J, and SLOANE N J A. Codes which detect deception[J]. The Bell System Technical Journal, 1974, 53(3): 405–424. doi: 10.1002/j.1538-7305.1974.tb02751.x
    [2]
    SIMMONS G J. Authentication Theory/Coding Theory[M]. BLAKLEY G R, CHAUM D. Advances in Cryptology: Proceedings of CRYPTO 84. Berlin Heidelberg: Springer-Verlag, 1985: 411–431.
    [3]
    王永传, 杨义先. 分裂认证码与纠错码[J]. 通信保密, 1999(1): 64–66.

    WANG Yongchuan and YANG Yixian. Spliting authentication codes with and error-correcting codes[J]. Information Security and Communications Privacy, 1999(1): 64–66.
    [4]
    OGATA W, KUROSAWA K, STINSON D R, et al. New combinatorial designs and their applications to authentication codes and secret sharing schemes[J]. Discrete Mathematics, 2004, 279(1/3): 383–405.
    [5]
    GE Gennian, MIAO Ying, and WANG Lihua. Combinatorial constructions for optimal splitting authentication codes[J]. Discrete Mathematics, 2005, 18(4): 663–678.
    [6]
    刘金龙, 许宗泽. CARTESIAN认证码的原理及构造[J]. 电子与信息学报, 2008, 30(1): 93–95.

    LIU Jinlong and XU Zongze. On the theory and construction of CARTESIAN authentication codes[J]. Journal of Electronics &Information Technology, 2008, 30(1): 93–95.
    [7]
    裴定一. 消息认证码[M]. 合肥: 中国科学技术大学出版社, 2009.

    PEI Dingyi. Message Authentication Codes[M]. Hefei: China University of science and Technology Press, 2009.
    [8]
    WANG Jinhua and SU Renwang. Further results on the existence of splitting BIBDs and application to authentication codes[J]. Acta Applicandae Mathematicae, 2010, 109(3): 791–803. doi: 10.1007/s10440-008-9346-8
    [9]
    LIANG Miao, JI Lijun, and ZHANG Jingcai. Some new classes of 2-fold optimal or perfect splitting authentication codes[J]. Cryptography and Communications, 2017, 9(3): 407–430. doi: 10.1007/s12095-015-0179-9
    [10]
    LI Mingchao, LIANG Miao, DU Beiliang, et al. A construction for optimal c-splitting authentication and secrecy codes[J]. Designs, Codes and Cryptography, 2018, 86(8): 1739–1755. doi: 10.1007/s10623-017-0421-x
    [11]
    COLBOURN C J and DINITZ J H. Handbook of Combinatorial Designs[M]. Boca Raton: CRC Press, 1996.
    [12]
    沈灏. 组合设计理论[M]. 上海: 上海交通大学出版社, 2008.

    SHEN Hao. Theory of Combinatorial Designs[M]. Shanghai: Shanghai Jiao Tong University Press, 2008.
    [13]
    SAURABH S and SINHA K. Some new resolvable group divisible designs[J/OL]. Communications in Statistics-Theory and Methods, 2020. doi: 10.1080/03610926.2020.1817487.
    [14]
    FORBES A D. Group divisible designs with block size four and type g ub1(gu/2)1[J]. Graphs and Combinatorics, 2020, 36(6): 1687–1703. doi: 10.1007/s00373-020-02213-5
    [15]
    ABEL R J R, BUNJAMIN Y A, and COMBE D. Some new group divisible designs with block size 4 and two or three group sizes[J]. Journal of Combinatorial Designs, 2020, 28(8): 614–628. doi: 10.1002/jcd.21719
    [16]
    XU Hengzhou, YU Zhongyang, FENG Dan, et al. New construction of partial geometries based on group divisible designs and their associated LDPC codes[J]. Physical Communication, 2020, 39: 100970. doi: 10.1016/j.phycom.2019.100970
    [17]
    HUANG Yupei, LIU Chiaan, CHANG Y, et al. A family of group divisible designs with arbitrary block sizes[J]. Taiwanese Journal of Mathematics, 2019, 23(6): 1291–1302.
    [18]
    HUBER M. Combinatorial bounds and characterizations of splitting authentication codes[J]. Cryptography and Communications, 2010, 2(2): 173–185. doi: 10.1007/s12095-010-0020-4
    [19]
    VISHNU V I and PUTHALI H B. Techniques for validating and sharing secrets[P]. USA, Patent, 20120159645, 2012.
    [20]
    王晨宇, 汪定, 王菲菲, 等. 面向多网关的无线传感器网络多因素认证协议[J]. 计算机学报, 2020, 43(4): 683–700. doi: 10.11897/SP.J.1016.2020.00683

    WANG Chenyu, WANG Ding, WANG Feifei, et al. Multi-factor user authentication scheme for multi-gateway wireless sensor networks[J]. Chinese Journal of Computers, 2020, 43(4): 683–700. doi: 10.11897/SP.J.1016.2020.00683
    [21]
    LI Zengpeng, WANG Ding, and MORAIS E. Quantum-safe round-optimal password authentication for mobile devices[J/OL]. IEEE Transactions on Dependable and Secure Computing, 2020. doi: 10.1109/TDSC.2020.3040776.
    [22]
    WANG Chenyu, WANG Ding, XU Guoai, et al. Efficient privacy-preserving user authentication scheme with forward secrecy for industry 4.0[J/OL]. Science China (Information Sciences). https://kns.cnki.net/kcms/detail/11.5847.TP.20210820.1521.008.html, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (789) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return