Advanced Search
Volume 44 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
LI Zhijun, TAN Maolin, WANG Mengjiao, MA Minglin. Associative Memory Circuit Based on Memristor with The Ebbinghaus Forgetting Rule[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3657-3665. doi: 10.11999/JEIT210677
Citation: LI Zhijun, TAN Maolin, WANG Mengjiao, MA Minglin. Associative Memory Circuit Based on Memristor with The Ebbinghaus Forgetting Rule[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3657-3665. doi: 10.11999/JEIT210677

Associative Memory Circuit Based on Memristor with The Ebbinghaus Forgetting Rule

doi: 10.11999/JEIT210677
Funds:  The National Key R&D Program of China (2018AAA0103300), The National Natural Science Foundation of China (62171401, 62071411)
  • Received Date: 2021-07-06
  • Rev Recd Date: 2021-09-08
  • Available Online: 2021-09-26
  • Publish Date: 2022-10-19
  • Memristor is an ideal device to realize artificial synapses due to its low power consumption, memory ability and nanometer size. In order to construct a simple, efficient and comprehensive associative memory circuit, a simple neuron circuit and a synaptic circuit based on the voltage-controlled threshold memristor is proposed. Then according to Pavlov’s associative memory model, the corresponding associative memory circuit is designed. This circuit has a simple structure and only contains three neurons and a memristive synapse, which can effectively reduce the network complexity and power consumption. what’s more, the circuit can simulate the full function of associative memory behavior. It not only realizes functions of learning, forgetting, accelerated-learning, deceleration-forgetting and deceleration-nature-forgetting, but also the learning rate and natural forgetting rate can be automatically adjusted according to the number of learning, so that the circuit is more bionic. In addition, the designed circuit agrees well with the Ebbinghaus forgetting curve, which enlarges the scope of application of the circuit.
  • loading
  • [1]
    WANG Rubin and ZHANG Zhikang. Energy coding in biological neural networks[J]. Cognitive Neurodynamics, 2007, 1(3): 203–212. doi: 10.1007/s11571-007-9015-z
    [2]
    DOSSET P, RASSAM P, FERNANDEZ L, et al. Automatic detection of diffusion modes within biological membranes using back-propagation neural network[J]. BMC Bioinformatics, 2016, 17(1): 197. doi: 10.1186/s12859-016-1064-z
    [3]
    MEROLLA P, ARTHUR J, AKOPYAN F, et al. A digital neurosynaptic core using embedded crossbar memory with 45 pJ per spike in 45 nm[C]. 2011 IEEE Custom Integrated Circuits Conference (CICC), San Jose, USA, 2011: 1–4. doi: 10.1109/CICC.2011.6055294.
    [4]
    LINDSEY C S, LINDBLAD T, SEKHNIAIDZE G, et al. Experience with the IBM ZISC036 neural network chip[J]. International Journal of Modern Physics C, 1995, 6(4): 579–584. doi: 10.1142/S0129183195000460
    [5]
    WANG Zilu, HONG Qinghui, and WANG Xiaoping. Memristive circuit design of emotional generation and evolution based on skin-like sensory processor[J]. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(4): 631–644. doi: 10.1109/TBCAS.2019.2923055
    [6]
    ANDERSON J R. Language, Memory, and Thought[M]. New York: Psychology Press, 1976: 39–40.
    [7]
    ZHAO Liang, HONG Qinghui, and WANG Xiaoping. Novel designs of spiking neuron circuit and STDP learning circuit based on memristor[J]. Neurocomputing, 2018, 314: 207–214. doi: 10.1016/j.neucom.2018.06.062
    [8]
    CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/tct.1971.1083337
    [9]
    STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
    [10]
    XIE Wenli, WANG Chunhua, and LIN Hairong. A fractional-order multistable locally active memristor and its chaotic system with transient transition, state jump[J]. Nonlinear Dynamics, 2021, 104(4): 4523–4541. doi: 10.1007/s11071-021-06476-2
    [11]
    LIANG Yan, WANG Guangyi, CHEN Guanrong, et al. S-type locally active memristor-based periodic and chaotic oscillators[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 5139–5152. doi: 10.1109/TCSI.2020.3017286
    [12]
    DONG Yujiao, WANG Guangyi, CHEN Guanrong, et al. A bistable nonvolatile locally-active memristor and its complex dynamics[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 84: 105203. doi: 10.1016/j.cnsns.2020.105203
    [13]
    HONG Qinghui, LI Ya, and WANG Xiaoping. Memristive continuous hopfield neural network circuit for image restoration[J]. Neural Computing and Applications, 2020, 32(12): 8175–8185. doi: 10.1007/s00521-019-04305-7
    [14]
    YANG Linmao and WANG Chunhua. Emotion model of associative memory possessing variable learning rates with time delay[J]. Neurocomputing, 2021, 460: 117–125. doi: 10.1016/j.neucom.2021.07.011
    [15]
    WANG Leimin and ZOU Huayu. A new emotion model of associative memory neural network based on memristor[J]. Neurocomputing, 2020, 410: 83–92. doi: 10.1016/j.neucom.2020.05.002
    [16]
    YANG Jiu, WANG Lidan, WANG Yan, et al. A novel memristive Hopfield neural network with application in associative memory[J]. Neurocomputing, 2017, 227: 142–148. doi: 10.1016/j.neucom.2016.07.065
    [17]
    ALIBART F, ZAMANIDOOST E, and STRUKOV D B. Pattern classification by memristive crossbar circuits using ex situ and in situ training[J]. Nature Communications, 2013, 4(1): 2072. doi: 10.1038/ncomms3072
    [18]
    TRUONG S N and MIN K S. New memristor-based crossbar array architecture with 50-% area reduction and 48-% power saving for matrix-vector multiplication of analog neuromorphic computing[J]. Journal of Semiconductor Technology and Science, 2014, 14(3): 356–363. doi: 10.5573/jsts.2014.14.3.356
    [19]
    PERSHIN Y V and DI VENTRA M. Experimental demonstration of associative memory with memristive neural networks[J]. Neural Networks, 2010, 23(7): 881–886. doi: 10.1016/j.neunet.2010.05.001
    [20]
    CHEN Ling, LI Chuandong, WANG Xin, et al. Associate learning and correcting in a memristive neural network[J]. Neural Computing and Applications, 2013, 22(6): 1071–1076. doi: 10.1007/s00521-012-0868-7
    [21]
    WANG Lidan, LI Huifang, DUAN Shukai, et al. Pavlov associative memory in a memristive neural network and its circuit implementation[J]. Neurocomputing, 2016, 171: 23–29. doi: 10.1016/j.neucom.2015.05.078
    [22]
    YANG Le, ZENG Zhigang, and WEN Shiping. A full-function pavlov associative memory implementation with memristance changing circuit[J]. Neurocomputing, 2018, 272: 513–519. doi: 10.1016/j.neucom.2017.07.020
    [23]
    HU Xiaofang, DUAN Shukai, CHEN Guanrong, et al. Modeling affections with memristor-based associative memory neural networks[J]. Neurocomputing, 2017, 223: 129–137. doi: 10.1016/j.neucom.2016.10.028
    [24]
    SUN Junwei, HAN Gaoyong, ZENG Zhigang, et al. Memristor-based neural network circuit of full-function pavlov associative memory with time delay and variable learning rate[J]. IEEE Transactions on Cybernetics, 2020, 50(7): 2935–2945. doi: 10.1109/TCYB.2019.2951520
    [25]
    LI Yi, ZHONG Yingpeng, ZHANG Jinjian, et al. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems[J]. Scientific Reports, 2014, 4(1): 4906. doi: 10.1038/srep04906
    [26]
    LIU Xiaoyang, ZENG Zhigang, and WEN Shiping. Implementation of memristive neural network with full-function pavlov associative memory[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2016, 63(9): 1454–1463. doi: 10.1109/TCSI.2016.2570819
    [27]
    EBBINGHAUS H. Memory: A contribution to experimental psychology[J]. Annals of Neurosciences, 2013, 20(4): 155–156. doi: 10.5214/ans.0972.7531.200408
    [28]
    ROE D G, KIM S, CHOI Y Y, et al. Biologically plausible artificial synaptic array: Replicating ebbinghaus’ memory curve with selective attention[J]. Advanced Materials, 2021, 33(14): 2007782. doi: 10.1002/adma.202007782
    [29]
    WANG Yabo, WANG Guangyi, SHEN Yiran, et al. A memristor neural network using synaptic plasticity and its associative memory[J]. Circuits, Systems, and Signal Processing, 2020, 39(7): 3496–3511. doi: 10.1007/s00034-019-01330-8
    [30]
    SHANG Meijia and WANG Xiaoping. A memristor-based circuit design for generalization and differentiation on Pavlov associative memory[J]. Neurocomputing, 2020, 389: 18–26. doi: 10.1016/j.neucom.2019.12.106
    [31]
    MA Deming, WANG Guangyi, HAN Chunyan, et al. A memristive neural network model with associative memory for modeling affections[J]. IEEE Access, 2018, 6: 61614–61622. doi: 10.1109/ACCESS.2018.2875433
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (1106) PDF downloads(152) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return