Advanced Search
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
WANG Xudong, LIU Shuai, WU Nan. CAEFI: Channel State Information Fingerprint Indoor Location Method Using Convolutional Autoencoder for Dimension Reduction[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2757-2766. doi: 10.11999/JEIT210663
Citation: WANG Xudong, LIU Shuai, WU Nan. CAEFI: Channel State Information Fingerprint Indoor Location Method Using Convolutional Autoencoder for Dimension Reduction[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2757-2766. doi: 10.11999/JEIT210663

CAEFI: Channel State Information Fingerprint Indoor Location Method Using Convolutional Autoencoder for Dimension Reduction

doi: 10.11999/JEIT210663
Funds:  The National Natural Science Foundation of China (61371091)
  • Received Date: 2021-07-02
  • Rev Recd Date: 2021-10-28
  • Available Online: 2021-11-10
  • Publish Date: 2022-08-17
  • In order to improve the performance of Wi-Fi fingerprint indoor positioning technology, a method based on Convolutional Neural Networks (CNN) for Channel State Information (CSI) fingerprint indoor positioning is first proposed. This method combines the CSI amplitude difference and phase difference information to train the CNN model in the offline stage. Positioning experiments are carried out in two different indoor positioning scenarios in the gallery and the laboratory, and the average positioning errors of 25 cm and 48 cm are obtained respectively; Then, on this basis, the focus is on improving the timeliness of CNN-based CSI indoor positioning. The Convolutional AutoEncoder (CAE) is introduced to realize the dimensionality reduction processing of CSI. Under the premise of ensuring the accuracy of the original positioning method, the positioning time is increased by 40% and the memory consumption is reduced to 1/15 of the original algorithm. The experimental results verify the effectiveness of the proposed algorithm.
  • loading
  • [1]
    ALI M U, HUR S, and PARK Y. Poster abstract: IoT enabled Wi-Fi indoor positioning system using raster maps[C]. The 18th ACM/IEEE International Conference on Information Processing in Sensor Networks, Montreal, Canada, 2019: 327–328.
    [2]
    REZAZADEH J, SUBRAMANIAN R, SANDRASEGARAN K, et al. Novel iBeacon placement for indoor positioning in IoT[J]. IEEE Sensors Journal, 2018, 18(24): 10240–10247. doi: 10.1109/JSEN.2018.2875037
    [3]
    TORRES-SOSPEDRA J, JIMÉNEZ A R, MOREIRA A, et al. Off-line evaluation of mobile-centric indoor positioning systems: The experiences from the 2017 IPIN competition[J]. Sensors, 2018, 18(2): 487. doi: 10.3390/s18020487
    [4]
    ZHANG Daqiang, ZHAO Shengjie, YANG L T, et al. NextMe: Localization using cellular traces in internet of things[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2): 302–312. doi: 10.1109/TII.2015.2389656
    [5]
    PAK J M, AHN C K, SHMALIY Y S, et al. Improving reliability of particle filter-based localization in wireless sensor networks via hybrid particle/FIR filtering[J]. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1089–1098. doi: 10.1109/TII.2015.2462771
    [6]
    ZHU Yuke, MOTTAGHI R, KOLVE E, et al. Target-driven visual navigation in indoor scenes using deep reinforcement learning[C]. 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017: 3357–3364.
    [7]
    DARDARI D, CLOSAS P, and, DJURIĆ P M. Indoor tracking: Theory, methods, and technologies[J]. IEEE Transactions on Vehicular Technology, 2015, 64(4): 1263–1278. doi: 10.1109/TVT.2015.2403868
    [8]
    WISANMONGKOL J, KLINKUSOOM L, SANPECHUDA T, et al. Multipath mitigation for RSSI-based Bluetooth low energy localization[C]. The 19th International Symposium on Communications and Information Technologies (ISCIT), Ho Chi Minh City, Vietnam, 2019: 47–51.
    [9]
    ABBAS M, ELHAMSHARY M, RIZK H, et al. WiDeep: WiFi-based accurate and robust indoor localization system using deep learning[C]. 2019 IEEE International Conference on Pervasive Computing and Communications, Kyoto, Japan, 2019: 1–10.
    [10]
    FENG Daquan, WANG Chunqi, HE Chunlong, et al. Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation[J]. IEEE Internet of Things Journal, 2020, 7(4): 3133–3146. doi: 10.1109/JIOT.2020.2965115
    [11]
    PEREKADAN V, MUKHERJEE T, BANERJEE C, et al. RF-MSiP: Radio frequency multi-source indoor positioning[C]. 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, USA, 2019: 5259–5268.
    [12]
    许浩, 王旭东, 吴楠. 基于卷积神经网络的室内可见光指纹定位方法[J]. 激光与光电子学进展, 2021, 58(17): 1706008.

    XU Hao, WANG Xudong, and WU Nan. Indoor visible light fingerprint positioning scheme based on convolution neural network[J]. Laser &Optoelectronics Progress, 2021, 58(17): 1706008.
    [13]
    SINGH V, AGGARWAL G, and UJWAL B V S. Ensemble based real-time indoor localization using stray WiFi signal[C]. 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, 2018: 1–5.
    [14]
    KHALAJMEHRABADI A, GATSIS N, and AKOPIAN D. Modern WLAN fingerprinting indoor positioning methods and deployment challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1974–2002. doi: 10.1109/COMST.2017.2671454
    [15]
    ACHROUFENE A, AMIRAT Y, and CHIBANI A. RSS-based indoor localization using belief function theory[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(3): 1163–1180. doi: 10.1109/TASE.2018.2873800
    [16]
    SOHAN A A, ALI M, FAIROOZ F, et al. Indoor positioning techniques using RSSI from wireless devices[C]. The 22nd International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 2019: 1–6.
    [17]
    BAHL P and PADMANABHAN V N. RADAR: An in-building RF-based user location and tracking system[C]. IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 2000: 775–784.
    [18]
    YOUSSEF M and ASHOK A. The Horus location determination system[J]. Wireless Networks, 2008, 14(3): 357–374. doi: 10.1007/s11276-006-0725-7
    [19]
    HOANG M T, YUEN B, DONG Xiaodai, et al. Recurrent neural networks for accurate RSSI indoor localization[J]. IEEE Internet of Things Journal, 2019, 6(6): 10639–10651. doi: 10.1109/JIOT.2019.2940368
    [20]
    WANG Xuyu, GAO Lingjun, and MAO Shiwen. CSI phase fingerprinting for indoor localization with a deep learning approach[J]. IEEE Internet of Things Journal, 2016, 3(6): 1113–1123. doi: 10.1109/JIOT.2016.2558659
    [21]
    HALPERIN D, HU Wenjun, SHETH A, et al. Predictable 802.11 packet delivery from wireless channel measurements[J]. ACM SIGCOMM Computer Communication Review, 2010, 40(4): 159–170. doi: 10.1145/1851275.1851203
    [22]
    XIE Yaxiong, LI Zhenjiang, and LI Mo. Precise power delay profiling with commodity Wi-Fi[J]. IEEE Transactions on Mobile Computing, 2019, 18(6): 1342–1355. doi: 10.1109/TMC.2018.2860991
    [23]
    WU Kaishun, XIAO Jiang, YI Youwen, et al. CSI-based indoor localization[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(7): 1300–1309. doi: 10.1109/TPDS.2012.214
    [24]
    WANG Xuyu, GAO Lingjun, MAO Shiwen, et al. DeepFi: Deep learning for indoor fingerprinting using channel state information[C]. 2015 IEEE Wireless Communications and Networking Conference, New Orleans, USA, 2015: 1666–1671.
    [25]
    WANG Xuyu, WANG Xiangyu, and MAO Shiwen. CiFi: Deep convolutional neural networks for indoor localization with 5 GHz Wi-Fi[C]. Proceedings of 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–6.
    [26]
    江小平, 王妙羽, 丁昊, 等. 基于信道状态信息幅值-相位的被动式室内指纹定位[J]. 电子与信息学报, 2020, 42(5): 1165–1171. doi: 10.11999/JEIT180871

    JIANG Xiaoping, WANG Miaoyu, DING Hao, et al. Passive fingerprint indoor positioning based on CSI amplitude-phase[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1165–1171. doi: 10.11999/JEIT180871
    [27]
    LI Haihan, ZENG Xiangsheng, LI Yunzhou, et al. Convolutional neural networks based indoor Wi-Fi localization with a novel kind of CSI images[J]. China Communications, 2019, 16(9): 250–260. doi: 10.23919/JCC.2019.09.019
    [28]
    SHI Shuyu, SIGG S, CHEN Lin, et al. Accurate location tracking from CSI-based passive device-free probabilistic fingerprinting[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5217–5230. doi: 10.1109/TVT.2018.2810307
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(6)

    Article Metrics

    Article views (1069) PDF downloads(136) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return